Студент приготовил к экзамену 50 вопросов из 60. В 30 билетах вопросы распределены случайным образом. Для положительной оценки надо ответить хотя бы на один из двух вопросов билета. Найти вероятность того, что студент сдаст экзамен. С подробным решением задачи
ответ: 43
Объяснение:
Пусть одно из чисел равно , тогда второе .
Пусть:
Тогда:
Где и взаимнопростые натуральные числа. Для определенности будем считать, что .
Заметим, что числа простые. Из второго уравнения очевидно, что не делится на , то есть .
Предположим теперь, что , тогда , но тогда, поскольку сумма двух чисел делится на , то либо каждое из них делится на , либо не одно из них не делится на . Если каждое из них делится на , то делится на , но правая часть второго равенства делится только на первую степень числа . Если же оба из них не делятся на , то с учетом того, что , не делится на . То есть мы пришли к противоречию.
Как видим, остается единственный вариант:
Пусть х1 и х2 - любые действительные числа (из множества R), удовлетворяющие единственному условию х2 > х1
Тогда функция y = f(x) называется:
- убывающей на R, если при этом: f(x2) < f(x1);
- возрастающей на R, если при этом: f(x2) > f(x1).
Объяснение:
Функция возрастающая - если большему аргументу отвечает большее значение фунцкции. Пусть у нас аргументы буду
По условию
1) Если мы умножим неравенство аргументов на -1, получится, что
Поскольку мы использовали те же значения функции (при данных значениях аргумента значения функций начальных и этих будет одинаково), то
Функция будет убывающей
2)
Поэтому функция возрастающая