1) домножим левую и правую части на x. чтобы избавиться от дроби
3x^2 + 3 = 6x
3x^2 - 6x + 3 = 0
D = b^2 - 4ac = (-6)^2 - 4 *3 * 3 = 36 -36 = 0. [1 корень]
x= -b /2a = 6 / 6 =1
ответ: 1
2) приводим дроби к общему знаменателю
к первой дроби доп.множитель Х, ко второй (x^2 +2)
3x - (x^2 +2) -x^2 + 3x - 2
-->
x (x^2 + 2) x (x^2 + 2)
система:
{-x^2 + 3x - 2 = 0
{x (x^2 + 2) 0
-x^2 + 3x - 2 = 0
D = b^2 - 4ac = 9 - 8 = 1 2 корня
x1,2 = -b ± √D / 2a
x1 = -3 + 1 /-2 = -2/-2 = 1
x2 = -3 -1 / -2 = -4/-2 = 2
ответ: 1;2
фото прикреплю, так легче
Дан треугольник с вершинами A(-4; 0), B(4:0), C(0; 2).
Так как точки даны на осях, то легко определяем длины сторон его.
АВ = 4-(-4) = 8.
АС = ВС = √(4² + 2²) = √(16 + 4) = √20 = 2√5.
Определяем радиус описанной окружности:
R = (abc)/(4S).
Площадь треугольника S = (1/2)*AB*H = (1/2)*8*2 = 8 кв.ед.
Тогда R = (2√5*8*2√5)/(4*8) = 5.
Теперь можно разложить вектор DC по векторам DA и DB, построением параллелограмма.
Проводим диагональ FG.
Из подобия треугольников DOB и DHG находим:
DG = (3/5)DB, DF = (3/5)DA.
Но так как DA = DB, то DG = DF.
ответ: DC = (3/5)(DA + DB).
1) домножим левую и правую части на x. чтобы избавиться от дроби
3x^2 + 3 = 6x
3x^2 - 6x + 3 = 0
D = b^2 - 4ac = (-6)^2 - 4 *3 * 3 = 36 -36 = 0. [1 корень]
x= -b /2a = 6 / 6 =1
ответ: 1
2) приводим дроби к общему знаменателю
к первой дроби доп.множитель Х, ко второй (x^2 +2)
3x - (x^2 +2) -x^2 + 3x - 2
-->
x (x^2 + 2) x (x^2 + 2)
система:
{-x^2 + 3x - 2 = 0
{x (x^2 + 2) 0
-x^2 + 3x - 2 = 0
D = b^2 - 4ac = 9 - 8 = 1 2 корня
x1,2 = -b ± √D / 2a
x1 = -3 + 1 /-2 = -2/-2 = 1
x2 = -3 -1 / -2 = -4/-2 = 2
ответ: 1;2
фото прикреплю, так легче
Дан треугольник с вершинами A(-4; 0), B(4:0), C(0; 2).
Так как точки даны на осях, то легко определяем длины сторон его.
АВ = 4-(-4) = 8.
АС = ВС = √(4² + 2²) = √(16 + 4) = √20 = 2√5.
Определяем радиус описанной окружности:
R = (abc)/(4S).
Площадь треугольника S = (1/2)*AB*H = (1/2)*8*2 = 8 кв.ед.
Тогда R = (2√5*8*2√5)/(4*8) = 5.
Теперь можно разложить вектор DC по векторам DA и DB, построением параллелограмма.
Проводим диагональ FG.
Из подобия треугольников DOB и DHG находим:
DG = (3/5)DB, DF = (3/5)DA.
Но так как DA = DB, то DG = DF.
ответ: DC = (3/5)(DA + DB).