при а>0 ветви параболы идут вверх при а<0 ветви параболы идут вниз прежде всего найдем нули функции, то есть те х, при которых у=0
обращается в ноль для этого решаем уравнение ах²+bx+c=0 для начала находим дискриминант D=b²-4ac если D>0, у нас будут два пересечения с осью ОХ в точках х¹ и х² которые являются корнями квадратичной функции.
х¹'²=(-b±✓D)/2a
если D=0, то такая точка будет одна, причём ось ОХ будет касательной к параболе в этой точке.
если D<0, и а>0 то парабола будет над осью ОХ и все у>0 если D>0 и а<0, то парабола будет под осью ОХ и все у<0
теперь найдем те точки, при которых парабола пересекает ось ОУ
для этого подставляем х=0 в y(x)=ах²+bx+c, нетрудно увидеть, что при х=0, у=с
далее найдем производную у'
y'(x)=(ах²+bx+c)'=2аx+b y'(x*)=0 => x*= -b/(2a)
это координата вершины параболы затем посчитаем y*=y(x*), подставив х* в наше уравнение параболы у(х*)=а(х*)²+bx*+с
Так что основными точками , которые Вам надо найти будут точки пересечения параболы с осями ОХ, ОУ и вершина параболы. остальные точки - на Ваше усмотрение...
Пусть х км/ч - скорость течения реки. Собственная скорость составляет 8 км/ч, тогда по течению реки он плыл со скоростью 8+х км/ч, а против течения реки 8-х км/ч.
Время в пути 4 часа: t(время)=S(расстояние):v(скорость)
Расстояние по течению реки катер проплыл за часов, а против течения реки за часов.
Составим и решим уравнение:
+ = 4 (умножим на (8+x)(8-x), чтобы избавиться от дробей)
при а>0 ветви параболы идут вверх
при а<0 ветви параболы идут вниз
прежде всего найдем нули функции, то есть те х, при которых у=0
обращается в ноль
для этого решаем уравнение
ах²+bx+c=0
для начала
находим дискриминант
D=b²-4ac
если D>0, у нас будут два пересечения с осью ОХ в точках х¹ и х²
которые являются корнями квадратичной функции.
х¹'²=(-b±✓D)/2a
если D=0, то такая точка будет одна, причём ось ОХ будет касательной к параболе в этой точке.
если D<0, и а>0 то парабола будет над осью ОХ и все у>0
если D>0 и а<0, то парабола будет под осью ОХ и все у<0
теперь найдем те точки, при которых парабола пересекает ось ОУ
для этого подставляем х=0 в
y(x)=ах²+bx+c, нетрудно увидеть, что
при х=0, у=с
далее найдем производную у'
y'(x)=(ах²+bx+c)'=2аx+b
y'(x*)=0 => x*= -b/(2a)
это координата вершины параболы
затем посчитаем y*=y(x*),
подставив х* в наше уравнение параболы
у(х*)=а(х*)²+bx*+с
Так что основными точками , которые Вам надо найти будут точки пересечения параболы с осями ОХ, ОУ и вершина параболы. остальные точки - на Ваше усмотрение...
Пусть х км/ч - скорость течения реки. Собственная скорость составляет 8 км/ч, тогда по течению реки он плыл со скоростью 8+х км/ч, а против течения реки 8-х км/ч.
Время в пути 4 часа: t(время)=S(расстояние):v(скорость)
Расстояние по течению реки катер проплыл за часов, а против течения реки за часов.
Составим и решим уравнение:
+ = 4 (умножим на (8+x)(8-x), чтобы избавиться от дробей)
+ = 4*(8+x)(8-x)
15*(8-x)+15*(8+x)=4*(64-x²)
120-15х+120+15x=256-4x²
240=256-4x²
4x²=256-240
4x²=16
х²=16:4
х²=4
х=±
х₁=2
х₂= - 2 - не подходит, поскольку х<0
ОТВЕТ: скорость течения реки равна 2 км/ч.
Проверка:
15:(8-2)=15:6=2,5 часа - против течения.
15:(8+2)=15:10=1,5 часа - по течению.
2,5+1,5=4 часа