В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
karolka10201020
karolka10201020
01.08.2022 20:30 •  Алгебра

Сумма членов бесконечно убывающей прогрессии равна 9, а сумма квадратов её членов равна 40,5. найдите первый член и знаменатель прогрессии

Показать ответ
Ответ:
Anchoys777
Anchoys777
20.07.2020 15:26
\frac{b1}{1-q} =9    (1)
b_{1}^{2} + b_{2}^{2} + b_{3}^{2}...=40,5
b_{1}^{2}+ b_{1}q + b_{1}q^{2} +b_{1}q^{3}...=40,5
b_{1}^2(1+q+q^2+q^3...)=40,5   (2)

То что находиться для нее используем сумму беск. геом. прогрессии 
1+q+q^2+q^3... =>
где, b1=1; b2=q; b3=q
q(разность этой прогрессии) = q/1=q
составим формулу
S=\frac{1}{1-q}

к выше приведенному уравнению вставим эту формулу
b_{1}^2*\frac{1}{1-q}=40,5
\frac{b1*b1}{1-q}=40,5   (3)

из (1) имеющихся значений \frac{b1}{1-q} =9  
"вставляем" в (3) \frac{b1*b1}{1-q}=40,5
9b_{1}=40,5
b_{1}=4,5

для нахождения q
\frac{b1}{1-q} =9  
\frac{4,5}{1-q} =9  
решаем пропорцию и => q=\frac{1}{2}  
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота