. Только учитывая это, можно избавиться от знаменателя (работать будем с уравнением ), но на это нужно будет обращать внимание.
Теперь раскроем модуль. Для этого нужно смотреть, где находится x относительно чисел -3 и 1. Рассмотрим 3 случая: Случай I:
- система подходит. Проверим на соответствие ОДЗ:
- верно. Значит, 1 нам подходит. Случай II:
- всякое решение из промежутка [-3; 1) Найдём пересечение с ОДЗ: [-3; 1)∩(-√7; √7)=(-√7; 1) - такие решения нас тоже удовлетворяют. (-3 < -√7, т. к. -9 < -7) Случай III:
Можно не решать эту систему, так как из второго случая следует, что x = 3 не соответствует ОДЗ, а у нас в условии все значения x < 3.
Итак, у нас есть корни 1 и все корни на промежутке (-√7; 1). ответ: множество чисел (-√7; 1]
. Только учитывая это, можно избавиться от знаменателя (работать будем с уравнением ), но на это нужно будет обращать внимание.
Теперь раскроем модуль. Для этого нужно смотреть, где находится x относительно чисел -3 и 1. Рассмотрим 3 случая:
Случай I:
- система подходит.
Проверим на соответствие ОДЗ:
- верно. Значит, 1 нам подходит.
Случай II:
- всякое решение из промежутка [-3; 1)
Найдём пересечение с ОДЗ:
[-3; 1)∩(-√7; √7)=(-√7; 1) - такие решения нас тоже удовлетворяют. (-3 < -√7, т. к. -9 < -7)
Случай III:
Можно не решать эту систему, так как из второго случая следует, что x = 3 не соответствует ОДЗ, а у нас в условии все значения x < 3.
Итак, у нас есть корни 1 и все корни на промежутке (-√7; 1).
ответ: множество чисел (-√7; 1]
1. q = -2.
2. 1;1/2;1/4 q = 1/2
1;3;9q = 3
2/3;1/2;3/8q = 3/4
√2; 1;√2/2q = 1/√2
3. заданная формула возможно неточно переписана или последовательность не геометрическая.
3*2n - 3 умножить на 2n или 3 возвести в степень 2n
4. q = 0,5
5. S = -0.25
6. b6 = 243.
7. 3-n,3-2n,3-3n,3-4n, 3n,3n+1,3n+2,3n+3 - єти последовательности не являются геометрическими прогрессиями
Объяснение:
1. Последовательность геометрическая т.к. а2 = а1 * q, а3 = а2 * q, где
q - одно и тоже число (знаменатель данной геометрической прогрессии)
q = а2 / а1 = -6 / 3 = -2.
4. Из формулы нахождения n-го члена геометрической прогрессии
q = а2 / а1 = 10/20 = 0,5.
5. q = а2 / а1 = -2/4 = -0,5
а5 = 4 * (-0,5)^4 = 0.25
a4 = 4 * (-0.5) ^3 = -0.5
6. b6 = b1 * q^5 = 243.