В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Кряквочка
Кряквочка
15.08.2021 20:52 •  Алгебра

Сумма двух натуральных чисел равна 2021 а их наименьшее общее кратное равно 12040. Найдите наибольший общий делитель для этих двух чисел.​

Показать ответ
Ответ:
narutoluffi1
narutoluffi1
15.10.2020 20:11

ответ: 43

Объяснение:

Пусть одно из чисел равно x, тогда второе 2021-x.

Пусть:

NOD(x;2021-x)=t

Тогда:

x=at\\2021-x=bt\\at+bt=2021\\t(a+b) = 2021=43*47\\NOK(x;2021-x)=abt=12040=43*2^3*5*7\\\left \{ {{t(a+b)=43*47} \atop {abt=43*8*5*7}} \right.

Где a и b  взаимнопростые натуральные числа. Для определенности будем считать, что a\leq b.

Заметим, что числа 43 ; 47;2;5;7 простые.  Из второго уравнения очевидно, что t не делится на 47 , то есть t\neq 47;43*47.

Предположим теперь, что t=1 , тогда a+b=43*47 , но тогда, поскольку сумма двух чисел делится на 43, то либо каждое из них делится на 43, либо не одно из них не делится на 43. Если каждое из них делится на 43, то abt делится на 43^2 , но правая часть второго  равенства делится только на первую степень числа 43. Если же оба из них не делятся на 43, то с учетом того, что t=1 , abt не делится на 43. То есть мы пришли к противоречию.

Как видим, остается единственный вариант:

t=43\\a+b=47=40+7\\ab=8*5*7=40*7\\a=40\\b=7

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота