Сумма первых n членов арифметической прогрессии вычисляется по формуле Sn=(a1+an)2⋅n. Пользуясь этой формулой, вычисли значение a1, если an=6, Sn=220, n=20.
Казалось бы, можно (x - 3) сократить, и получится y = 1/x. Но в начальной функции x = 3 не входит в область определения. Поэтому в этой точке будет устранимый разрыв, то есть прокол. Точка A(3; 1/3) выколота из графика y = 1/x. Прямая y = kx пересекает гиперболу в 2 точках при любых k, кроме одного значения: когда прямая проходит через точку A(3; 1/3). 1/3 = k*3; k = 1/9 - вот при этом значении будет одно пересечение. Всё. Результат на рисунке. Я не знаю, как вы нашли 3 корня, но очевидно, что метод - неправильный.
Задача : Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.
Решение: Вероятность набрать верную цифру из десяти равна по условию 1/10. Рассмотрим следующие случаи: 1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра). 2. первый звонок оказался неверным, а второй - верным, вероятность равна 9/10*1/9=1/10 (первый раз набрана неверная цифра, а второй раз верная из оставшихся девяти цифр). 3. первый и второй звонки оказались неверными, а третий - верным, вероятность равна 9/10*8/9*1/8=1/10 (аналогично пункту 2).
Всего получаем P=1/10+1/10+1/10=3/10=0,3P=1/10+1/10+1/10=3/10=0,3 - вероятность того, что ему придется звонить не более чем в три места.
Казалось бы, можно (x - 3) сократить, и получится y = 1/x.
Но в начальной функции x = 3 не входит в область определения.
Поэтому в этой точке будет устранимый разрыв, то есть прокол.
Точка A(3; 1/3) выколота из графика y = 1/x.
Прямая y = kx пересекает гиперболу в 2 точках при любых k, кроме одного значения: когда прямая проходит через точку A(3; 1/3).
1/3 = k*3; k = 1/9 - вот при этом значении будет одно пересечение.
Всё. Результат на рисунке.
Я не знаю, как вы нашли 3 корня, но очевидно, что метод - неправильный.
Задача : Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.
Решение: Вероятность набрать верную цифру из десяти равна по условию 1/10. Рассмотрим следующие случаи:
1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра).
2. первый звонок оказался неверным, а второй - верным, вероятность равна 9/10*1/9=1/10 (первый раз набрана неверная цифра, а второй раз верная из оставшихся девяти цифр).
3. первый и второй звонки оказались неверными, а третий - верным, вероятность равна 9/10*8/9*1/8=1/10 (аналогично пункту 2).
Всего получаем P=1/10+1/10+1/10=3/10=0,3P=1/10+1/10+1/10=3/10=0,3 - вероятность того, что ему придется звонить не более чем в три места.
ответ: 0,3