Сначала, найдём правую сторону, умножив, сначала первое число в первой скобке по отдельности на число во второй, а затем — вторую.
x² – 5 = (x + 5)(2x – 1)
x² – 5 = 2x² – x + 10x – 5
Числа с “x” переведём на левую сторону, без “x” — на правую. Если какое-то число перевелось, оно будет менять свой знак.
x² – 2x² + x – 10x = – 5 + 5
Правая сторона при вычислении даст 0:
x² – 2x² + x – 10x = 0
Тут уже дальше можно и не решать уравнение: в любом случае ответ будет 0.
Сначала, найдём правую сторону, умножив, сначала первое число в первой скобке по отдельности на число во второй, а затем — вторую.
x² – 5 = (x + 5)(2x – 1)
x² – 5 = 2x² – x + 10x – 5
Числа с “x” переведём на левую сторону, без “x” — на правую. Если какое-то число перевелось, оно будет менять свой знак.
x² – 5 = 2x² – x + 10x – 5
x² – 2x² + x – 10x = – 5 + 5
Правая сторона при вычислении даст 0:
x² – 2x² + x – 10x = – 5 + 5
x² – 2x² + x – 10x = 0
Тут уже дальше можно и не решать уравнение: в любом случае ответ будет 0.
{x- y= 5
{x² + 5x= 0
{x(x+ 5)= 0
{x- y= 5
x(x+ 5)=0
x₁= 0; x₂= -5
{x -y =0
{[x₁=0
[x₂= -5
2. x- y=0
0- y=0
y=0
(0;0)
x- y=0
-5- y=0
y= -5
(-5; -5)
ответ: (0;0), (-5;-5)
2)
{x² + y²= 26
{x- y= 4
{x= 4+ y
{ (4+ y)² + y²= 26
{x= 4+ y
{ 16+ 8y+ y²+ y²= 26
Решим квадратное уравнение
2y²+ 8y+ 16- 26=0
2y²+ 8y- 10= 0 |: 2
y²+ 4y- 5= 0
По теореме Виета:
[y₁+ y₂= -4
[y₁y₂= -5, значит y₁= -5; y₂= 1
2. x= 4+ y
x= 4-5
x= -1
(-1; -5)
x= 4+ y
x= 4+ 1
x= 5
(5; 1)
ответ: (-1; -5), (5; 1)
3)
{x+ y = 7
{y² -3y= 0
Решим уравнение из системы
y² -3y=0
y(y- 3)=0
y₁=0; y₂= 3
2. x+ y= 7
x= 7
(7;0)
x+ y= 7
x= 7- 3
x= 4
(4; 3)
ответ: (7;0), (4; 3)