В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Арти1234567890
Арти1234567890
17.01.2021 16:46 •  Алгебра

Существует ли такие три действительные числа, что если их поставить в одном порядке в качестве коэффициентов квадратного трехчлена, то он будет иметь два различных положительных корня, а если в другом порядке, то два различных отрицательных корня?

Показать ответ
Ответ:
ress334
ress334
04.10.2020 00:44
Положим что такое возможно. Тк мы имеем права в любой итерации перемены местами коэффициентов ,при поиске корней поделить обе части уравнения на любой его -коэффициент,(Тк он константа),то Можно принять первый член произвольно равным единице.(надеюсь понятно) Тогда уравнение примет вид: x^2+bx+c=0. По теореме Виета когда два положительных решения,очевидно,что. b=-(x1+x2)<0 c=x1*x2>0 То есть мы имеем : 1>0, b<0,c>0 На какой то итерации перестановок получим два отрицательных корня. Тогда произведение его корней также положительно,а вот сумма корней станет отрицательной.(то второй коэффициент должен быть положительным!) Тогда кандидатом на второй коэффициент могут быть либо 1 либо с. 1 быть не может,тк произведение корней равно отношению последнего и первого члена(теорема Виета) ,но b и c разных знаков,то их отношение отрицательно,что противоречит положительности произведения корней. Аналогично с не может быть вторым членом,тк b<0 ;1>0. То есть мы пришли к противоречит. То есть таких a,b,c не существует
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота