В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dina15777
dina15777
28.04.2022 05:59 •  Алгебра

Существует ли такой полином p(x), что имеет отрицательный коэффициент, но все коэффициенты полиномов р^2(х),p^3((x) являются положительными?

Показать ответ
Ответ:
alinanamcat12
alinanamcat12
03.10.2020 18:46
Да, существует, например
x^2\cdot\left[2\left(x+\dfrac1x\right)^2+3\left(x+\dfrac1x\right)-5\right] (а если точнее, тот полином, который получится, если раскрыть скобки)
Легко проверить, что P² и P³ содержат только положительные коэффициенты (при этом проверять можно только чуть больше половины коэффициентов - многочлен симметричный).

Остается показать, что этого достаточно, чтобы любая степень Pⁿ, n ≥ 2 имела только положительные коэффициенты. Это верно, т.к.:
а) понятно, что если P, Q - многочлены с положительными коэффициентами, то и PQ - многочлен с положительными коэффициентами (следует из правила умножения многочленов)
б) Pⁿ разлагается в произведение P², P³ (можно доказать, например, по индукции: (база) для n = 2, 3 уже всё проверено, (переход) пусть для всех степеней 2, 3, ..., n (n ≥ 3) верно. Тогда верно и для n + 1, т.к. Pⁿ⁺¹ = P² Pⁿ⁻¹, а P², Pⁿ⁻¹ - с положительными коэффициентами по предположению индукции)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота