Сумма всех четных чисел от 2 до 200 включительно представляет собой сумму первых 100 членов арифметический прогрессии an с первым членом а1, равным 2 и разностью d, также равной 2.
Найдем сумму этих чисел, используя формулу суммы членов арифметической прогрессии с первого по n-й включительно Sn = (2 * a1 + d * (n - 1)) * n / 2.
Подставляя в эту формулу значения a1 = 2, d = 2, n = 100, получаем:
по теч . 40км х + 5км/ч 40/(х +5) ч
пр. теч. 30 км х - 5 км/ч 30/(х -5) ч
V собств. = х км/ч
Vтеч. = 5 км/ч
Составим уравнение:
40/(х + 5) + 30/(х -5) = 5 | * (x +5)(x - 5)≠ 0
x≠ -5, x≠ 5
40(x - 5) +30(x+5) = 5(x² -25)
40x -200 +30x +150 = 5x² -125,
5x² -70x -75 = 0
x² - 14x - 15 = 0
По т. Виета: х1 = -1 ( не подходит по условию задачи)
х2 = 15 (км/ч) - V собств.
ответ: Vсоств. = 15 км/ч
10100
Объяснение:
Сумма всех четных чисел от 2 до 200 включительно представляет собой сумму первых 100 членов арифметический прогрессии an с первым членом а1, равным 2 и разностью d, также равной 2.
Найдем сумму этих чисел, используя формулу суммы членов арифметической прогрессии с первого по n-й включительно Sn = (2 * a1 + d * (n - 1)) * n / 2.
Подставляя в эту формулу значения a1 = 2, d = 2, n = 100, получаем:
S100 = (2 * 2 + 2 * (100 - 1)) * 100 / 2 = (2 * 2 + 2 * 99) * 50 = 2 * 101 * 50 = 202 * 50 = 10100.
ответ: искомая сумма равна 10100.