Существует ли выпуклый четырех угольник углы которого равны 58°,42°,111°,125° ответ обоснуйте Сколько сторон имеет многоугольник если сумма его углов ровна 1080° И ответьте с решением, не только ответ
1) Любое чётное число можно записать в виде 2n, n- натуральное число при n=1 получим первое четное число, равное 2 при n=2 - второе число, равное 4
при n=10 - десятое число, равное 20 при n=99 - девяносто девятое число, равно 198 2) Любое нечётное число можно записать в виде 2k-1, k - натуральное число при k=1 получим первое нечетное число, равное 2·1-1=1 при k=2 - второе число, равное 2·2-1= 3
при k=12 - двенадцатое число, равное 2·12-1=23
при k=77 - семьдесят седьмое число, равное 2·77-1=153.
2n, n- натуральное число
при n=1 получим первое четное число, равное 2
при n=2 - второе число, равное 4
при n=10 - десятое число, равное 20
при n=99 - девяносто девятое число, равно 198
2)
Любое нечётное число можно записать в виде
2k-1, k - натуральное число
при k=1 получим первое нечетное число, равное 2·1-1=1
при k=2 - второе число, равное 2·2-1= 3
при k=12 - двенадцатое число, равное 2·12-1=23
при k=77 - семьдесят седьмое число, равное 2·77-1=153.
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3) (3 + Х)(x - 3) / (Х - 5)(x - 3) = (x² - 9) / (Х - 5)(x - 3) = (x² - 9) / (x² - 8x + 15)
Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4) (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4)
x (4 + Х) / x( x² - 4)