Существует ли значения переменной х при которых равно нулю значение дроби (при положительном ответе найдите эти значения) а) 5х-1/х б) (х-2)(х^2-9)/х^2-4 в) (х-1)^2 + (х+2)^2/х^2+1
Пусть скорость пешком v₁ = х км/ч, тогда скорость на велосипеде v₂ = х + 6 км/ч Время при движении пешком t₁ = 45 мин = 3/4 ч Время на велосипеде t₂ = 20 мин = 1/3 ч Расстояние до школы S = v₁t₁ = v₂t₂
Тогда: v₁t₁ = v₂t₂ x*3/4 = (x + 6)*1/3 3/4 x = 1/3 x + 2 9/12 x - 4/12 x = 2 5/12 x = 2 x = 2 * 12/5 x = 24/5 x = 4,8 (км/ч) - скорость пешком. х + 6 = 10,8 (км/ч) - скорость на велосипеде
а) модуль числа а это само число а, если оно взято со знаком + и число !а!=-а, если а число отрицательное, т.е. взято со знаком -. Отсюда можно сделать вывод что модуль никогда не может быть равен отрицательному числу, абсолятное значение всегда положительно, поэтому единственное число, удоволтворяющее !x!=-x это 0, поэтому под буквой а можешь отметить только 0
б) Во втором случае этому уравнению будет эквивалентна система уравнений вида
x+2=x+2 - тождественно верно
x+2=-(x+2)-решаем
x+2=-x-2
x+x+2+2=0
2x+4=0
2x=-4
x=-2
Значит все точки числовой прямой начиная с x=-2 и в положительнную сторону будут удоволетворять уравнению, отсюда ответ будет вся числовая прямая начиная с -2 и больше
тогда скорость на велосипеде v₂ = х + 6 км/ч
Время при движении пешком t₁ = 45 мин = 3/4 ч
Время на велосипеде t₂ = 20 мин = 1/3 ч
Расстояние до школы S = v₁t₁ = v₂t₂
Тогда: v₁t₁ = v₂t₂
x*3/4 = (x + 6)*1/3
3/4 x = 1/3 x + 2
9/12 x - 4/12 x = 2
5/12 x = 2
x = 2 * 12/5
x = 24/5
x = 4,8 (км/ч) - скорость пешком.
х + 6 = 10,8 (км/ч) - скорость на велосипеде
S = 4,8*3/4 = 10,8*1/3 = 3,6 (км)
ответ: 3,6 км
а) модуль числа а это само число а, если оно взято со знаком + и число !а!=-а, если а число отрицательное, т.е. взято со знаком -. Отсюда можно сделать вывод что модуль никогда не может быть равен отрицательному числу, абсолятное значение всегда положительно, поэтому единственное число, удоволтворяющее !x!=-x это 0, поэтому под буквой а можешь отметить только 0
б) Во втором случае этому уравнению будет эквивалентна система уравнений вида
x+2=x+2 - тождественно верно
x+2=-(x+2)-решаем
x+2=-x-2
x+x+2+2=0
2x+4=0
2x=-4
x=-2
Значит все точки числовой прямой начиная с x=-2 и в положительнную сторону будут удоволетворять уравнению, отсюда ответ будет вся числовая прямая начиная с -2 и больше