1) у + 2 = √(х + 4) у + х³ = 0 анализируем сами формулы: а) у = √(х + 4) - 2 Если бы -2 не было, то наша кривуля (график прощения) начиналась от точки бы через (0;2) и дальше вверх. Теперь эту кривую надо опустить на 2 единицы вниз, параллельно оси у Значит, она начинается от точки (-6;-2) пройдёт через (-2; 0) и дальше вверх. б) у = - х³ Это кубическая парабола, проходит через начало координат через точки ( -1;1) и (1; -1) в) вывод: эти кривые пересекаются в точке. значит, система имеет одно решение. 2) смотри во вложении
у + х³ = 0
анализируем сами формулы:
а) у = √(х + 4) - 2
Если бы -2 не было, то наша кривуля (график прощения) начиналась от точки бы через (0;2) и дальше вверх.
Теперь эту кривую надо опустить на 2 единицы вниз, параллельно оси у
Значит, она начинается от точки (-6;-2) пройдёт через (-2; 0) и дальше вверх.
б) у = - х³
Это кубическая парабола, проходит через начало координат через точки ( -1;1) и (1; -1)
в) вывод: эти кривые пересекаются в точке. значит, система имеет одно решение.
2) смотри во вложении
перенесем оба числа в левую стронуи приравняем 0, т.к. это нам даст определение области значений между этими числами
35х^4-6х^8=0
выделим х^4
х^4(35-6х^4)=0
выражение равно0 только когда хотя бы один из множителей равен 0
либо х^4=0
х=0
либо 35-6х^4=0
35=6х^4
х^4=35/6
расставим знаки +/- на графике. если значение принимает положительное зачение, то 35х^4>6х^8, иначе наоборот
ответ
35х^4<6х^8 при
35х^4=6х^8 при
35х^4>6х^8 при
но меньше 0
35х^4=6х^8 при х=0
35х^4>6х^8 при
х>0 но меньше
35х^4=6х^8 при
35х^4<6х^8 при