Уравнение квадратичной функции в общем виде y=ax²+bx+c. Если функция проходит через заданные точки, то они должны удовлетворять этой функции: точка (0;3) _ a0²+b0+c=3; c=3; точка (1;5) _ a1²+b1+c=5; a+b+c=5; точка (2;9); a2²+b2+c=9. Решаем систему этих уравнений: a+b+3=5; 4a+2b+3=9. Из первого уравнения выделяем а: a=2-b и подставляем его во второе уравнение: 4(2-b)+2b=9-3; 8-4b+2b=6; -2b=-2; b=1. Находим а: а=2-1=1. Теперь, когда все коэффициенты известны можем записать уравнение проходящее через заданные точки: у=x²+х+3
В этом задании вам необходимо определить значение выражений при заданных значениях. Получается следующее решение.
(5p + q) : (р – 4q), если:
а) При p = –2,18; q = 10,9;
(5 * (-2,18)) + 10,9) : (-2,18 - 4 * 10,9) = (-10,9 + 10,9) : (-2,18 - 43,6) = 0 : 45,78 = 0.
В результате получается ответ равный 0.
б) При p = 2; q = 3;
(5 * 2 + 3) : (2 - 4 * 3) = (10 + 3) : (2 - 12) = 13 : (-10) = -1,3.
В результате получается ответ равный -1,3.
в) При р = 0,5; q = 1.
(5 * 0,5 + 1) : (0,5 - 4 * 1) = (2,5 + 1) : (0,5 - 4) = 3,5 : (-3,5) = -1.
Значение данного выражения равно -1.