Знаменатель нас с точки зрения экстремумов не интересует, только отметим, что знаменатель не может быть равен нулю, значит x^2 не может быть равен 4, следовательно две точки нужно выкинуть: -2 и 2 - в них функция терпит разрыв. Кстати, это по ходу означает, что производная в них вообще не существует.
Приплыли. Отсюда видим, что найденное выражение обратится в ноль при трёх значениях х: х = 0; х = -корень(12) ; х=корень(12) в этих трёх этих точках производная будет равна нулю, и они кандидаты на экстремумы. Однако прикидка знаков показывает, что при х=-1 нуля функция положительна (ибо и числитель, и знаменатель оба отрицательны), а при х=1 отрицательна (ибо числитель положителен, а знаменатель отрицателен), а раз такое дело, то х = 0 не является экстремумом. За такую подлость выкидываем его из списка.
Итого, остаются два экстремума: х=-корень(12) и х = корень(12).
Ну, что знал - всё рассказал. Если обманул, то чур не виноват. Лучше проверь за мной.
f(x) = y = 8x - 5x^(-4) + x^(-1) - x^(4/5);
f'(x) = 8 + 20x^(-5) - x^(-2) - 4/5x^(-1/5);
2)
вначале найдем производную x^(ctgx^2):
g(x) = x^(ctgx^2);
ln(g(x))' = 1/g(x) * g'(x);
g'(x) = g(x)*(lng(x))';
(lng(x))' = (lnx^(ctgx^2))' = (ctgx^2lnx)' = 2*ctgx*(-1/sin^2x)*lnx + ctg^2x/x;
g'(x) = x^(ctg^2x) * (2 * ctgx * (-1/sin^2x) * lnx + (ctg^2x)/x);
f(x) = y = 2x^(ctgx^2)*(5x^3 + x^(1/3));
f'(x) = 2 * g'(x) * (5x^3 + x^(1/3)) + 2 * g(x) * (15x^2 + 1/3x^(-2/3));
f'(x) = 2 * x^(ctg^2x) * (2 * ctgx * (-1/sin^2x) * lnx + (ctg^2x)/x) * (5x^3 + x^(1/3)) + 2 * x^(ctg^2x) * (15x^2 + (1/3)x^(-2/3)).
Итак, нужно посчитать производную твоей функции, и посмотреть где она равна нулю. Собственно, к этому всё сводится.
f'(x) = ( (x^3 )' * (x^2-4) - (x^3)*(x^2-4)' ) / (x^2-4)^2
Знаменатель нас с точки зрения экстремумов не интересует, только отметим, что знаменатель не может быть равен нулю, значит x^2 не может быть равен 4, следовательно две точки нужно выкинуть: -2 и 2 - в них функция терпит разрыв. Кстати, это по ходу означает, что производная в них вообще не существует.
Далее продолжаем курочить только числитель, пытаясь найти его нули.
3*x^2 * ( x^2 - 4 ) - x^3 * (x^2 ' - 4') = 0
3*x^4 - 12 * x^2 - 2 * x^4 = 0
x^4 - 12 * x^2 = 0
x^2 * ( x^2 - 12 ) = 0
Приплыли. Отсюда видим, что найденное выражение обратится в ноль при трёх значениях х:
х = 0; х = -корень(12) ; х=корень(12)
в этих трёх этих точках производная будет равна нулю, и они кандидаты на экстремумы. Однако прикидка знаков показывает, что при х=-1 нуля функция положительна (ибо и числитель, и знаменатель оба отрицательны), а при х=1 отрицательна (ибо числитель положителен, а знаменатель отрицателен), а раз такое дело, то х = 0 не является экстремумом. За такую подлость выкидываем его из списка.
Итого, остаются два экстремума: х=-корень(12) и х = корень(12).
Ну, что знал - всё рассказал. Если обманул, то чур не виноват. Лучше проверь за мной.