Сызықтық функция графигі тек: 1) i және iii коорд
ширекте; 2) іі және іv координаталық ширектерде; 3) i және
координаталык ширектерде; 4) іі және іv координаталық шибек
о) | жөне |v координаталық ширектерде; 6) i және iii координ
ширектерде орналасуы мүмкін бе?
егер мүмкін болса, оның формуласының түрі қандай? мысал
келтіріңдер. жауаптарыңды негіздеңдер.
ол
Решил только 5, за такие только это:
1) x - √x - 12 = 0
-√x = -x + 12
√x = -x + 12
√x = x - 12
x = x² - 24x + 144
x - x² + 24x - 144 = 0
25x - x² + 24x - 144 = 0
x² - 25x + 144 = 0
D = 625 - 576 = 7²
x = (25 + 49)/4 = 16
ответ: 16
2) ∛x² + 8 = 9∛x
∛x² + 8 - 9∛x = 0
t² - 9t + 8 = 0
D = 81 - 32 = 7²
t1 = 1 t2 = 8
x = 1 x = 512
ответ: 1; 512
3) √x - 2/√x = 1
(x - 2 - √x)/√x = 0 x>1
x - 2 - √x = 0
√x = x - 2
x² - 5x + 4 = 0
D = 25 - 16 = 3²
x = 4
ответ: 4
4) √(x + 5) - 3∜(x+5) + 2 = 0
t² - 3t + 2 = 0
D = 9 - 8 = 1²
t1 = 1 t2 = 2
∜(x + 5) = 1 ∜(x + 5) = 2
x = -4 x = 11
ответ: -4; 11
5) 1/(∛x + 1) + 1/(∛x+3) = 0
(∛x + 3 + 2(∛x + 1))/((∛x + 1) * (∛x+3)) = 0
∛x + 3 + 2(∛x + 1) = 0
∛x + 3 + 2∛x + 2 = 0
3∛x + 5 = 0
3∛x = -5
x = -(5/3)³
x = -4,629
ответ: -4,629
Объяснение:
Решаем графически.
1) Решением первого неравенства является область координатной плоскости над графиком функции
Решение первого неравенства выделено красной областью на первой картинке.
2) Решением второго неравенства является область координатной плоскости под графиком функции
Решение второго неравенства выделено синей областью на второй картинке.
Тогда решением системы неравенств является область, образованная пересечением двух предыдущих областей.
Решение системы выделено зеленой областью на третьей картинке.