В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
IRINADREM
IRINADREM
04.07.2022 02:57 •  Алгебра

ть будь ласка
Розв’язати квадратне рівняння
6х2-4х=6+х

Показать ответ
Ответ:
Vasya1337ez
Vasya1337ez
18.12.2021 08:05
\frac{log_{21+4x-x^2}(7-x)}{log_{x+3}(21+4x-x^2)} \ \textless \ \frac{1}{4}
ОДЗ: 21 + 4x - x² > 0
          21 + 4x - x² ≠ 1
          7 - x > 0
          x + 3 > 0
          x + 3 ≠ 1

21 + 4x - x² > 0
x² - 4x - 21 < 0

x² - 4x - 21 = 0
По теореме Виета: x₁ = -3, x₂ = 7.

x² - 4x - 21 < 0
x ∈ (-3; 7)

21 + 4x - x² ≠ 1
x² - 4x - 20 ≠ 0
D = 16 + 80 = 96
x_1 \neq \frac{4- \sqrt{96}}{2} = 2 -\sqrt{24} = 2(1-\sqrt{6}) \\ x_2 \neq \frac{4+\sqrt{96}}{2} = 2+\sqrt{24}=2(1+\sqrt{6})

7 - x > 0
x < 7

x + 3 > 0
x > -3

x + 3 ≠ 1
x ≠ -2

Окончательно, ОДЗ: x ∈ (-3; 2(1-\sqrt{6})) U (2(1-\sqrt{6}); -2) U (-2; 2(1+\sqrt{6})) U (2(1+\sqrt{6}); 7).

Решаем само неравенство:
\frac{log_{-(x+3)(x-7)}(7-x)}{log_{x+3}(-(x+3)(x-7))} \ \textless \ \frac{1}{4} \\ \frac{log_{(x+3)(7-x)}(7-x)}{log_{x+3}((x+3)(7-x))} \ \textless \ \frac{1}{4}
\frac{1}{log_{7-x}((x+3)(7-x))*log_{x+3}((x+3)(7-x))} \ \textless \ \frac{1}{4} \\ \frac{1}{(log_{7-x}(x+3)+1)*(1+ log_{x+3}(7-x))} \ \textless \ \frac{1}{4}
\frac{1}{( \frac{1}{ log_{x+3}(7-x)}+1)*(1+ log_{x+3}(7-x))} \ \textless \ \frac{1}{4} \\ \frac{log_{x+3}(7-x)}{(1+ log_{x+3}(7-x))^2} \ \textless \ \frac{1}{4}
Замена:
t=log_{x+3}(7-x) \\ \frac{t}{(1+t)^2} \ \textless \ \frac{1}{4} \\ \frac{4t-(1+t)^2}{4(1+t)^2} \ \textless \ 0
\frac{4t-1-2t-t^2}{4(1+t)^2} \ \textless \ 0 \\ \frac{-(1-t)^2}{4(1+t)^2} \ \textless \ 0
\frac{(1-t)^2}{4(1+t)^2}\ \textgreater \ 0
t ≠ 1
t ≠ -1
Делаем обратную замену:
log_{x+3}(7-x) \neq 1 \\ log_{x+3}(7-x) \neq -1

7-x \neq x+3\\ 7-x \neq \frac{1}{x+3}

2x \neq 4\\ \frac{(7-x)(x+3)-1}{x+3} \neq 0

x \neq 2\\ \frac{20+4x-x^2}{x+3} \neq 0

x \neq 2\\ x^2-4x-20 \neq 0 \\ x+3 \neq 0

x \neq 2\\ x^2-4x-20 \neq 0 \\ x\neq -3

Учитывая ОДЗ, окончательный ответ: x ∈ (-3; 2(1-\sqrt{6})) U (2(1-\sqrt{6}); -2) U (-2; 2) U (2; 2(1+\sqrt{6})) U (2(1+\sqrt{6}); 7).

 
0,0(0 оценок)
Ответ:
юра416
юра416
22.05.2021 15:40
1.  Первую часть я уже выпоняла.
Числовая окружность хорошо иллюстрирует тригонометрические функции.
Образно так: общеизвестно - все точки на числовой плоскости имеют две координаты: абсциссу и ординату. Точки, которые лежат на единичной окружности тоже имеют две координаты, но у них особое название: абсциссу называют косинусом и ординату - синусом.
На единичной окружности есть круговая шкала: начало шкалы в точке пересечения с осью Ох - по круговой шкале  это начало отсчета, там стоит 0. против часовой стрелки откладываются положительные значения, по часовой - отрицательные. Значения откладываются в радианах, мы знаем что 180°= π радиан, 360°=2π,  90°=π/2,  270°=3π/2.Эти значения соответствуют точкам пересечения единичной окружности с осями координат. 4π=720°, это два оборота, т е в той же точке что и 2π. (Красные точки)
2.  t= \pi n,n \in Z.  Если перебрать целые значения n, то получим числа:
 ...,-3 \pi ,-2 \pi ,- \pi ,0, \pi, 2 \pi, 3\pi,....Это точки числовой окружности отмеченные, начиная с 0 через \pi, (т е через полкруга). против часовой стрелки положительные значения, по часовой - отрицательные. Положительные значения из промежутка [0;2π] мы можем показать на окружности, таких значений два: 0 и \pi остальные будут совпадать с уже указанными,  отрицательные значения из промежутка [-2π;0], их тоже два 0 и  -\pi, для данной формулы тоже совпадут с уже указанными.
t=б \frac{ \pi }{3}+ \pi n,n \in Z.  Это точки числовой окружности отмеченные, начиная с \frac{ \pi }{3} через \pi, (т е через полкруга) против часовой стрелки положительные значения, и  начиная с -\frac{ \pi }{3} через \pi, (т е через полкруга) по часовой - отрицательные. И опять на промежутке [0;2π] мы можем показать на окружности только два значения: \frac{ \pi }{3} и \frac{4 \pi }{3}= \pi + \frac{ \pi }{3}, остальные совпадут с уже указанными, и на промежутке [-2π;0]  тоже два значения: -\frac{ \pi }{3} и  - \frac{4 \pi }{3}= -(\pi + \frac{ \pi }{3}) тоже совпадут с уже указанными.В целом мы отметили на окружности 4 точки:  \frac{ \pi }{3},  \frac{4 \pi }{3}= \pi + \frac{ \pi }{3},  -\frac{ \pi }{3},   - \frac{4 \pi }{3}= -(\pi + \frac{ \pi }{3}).   
Короче
t= \pi n,n \in Z. На промежутке [0;2π]  два значения: 0 и \pi, остальные  для n \in Z совпадут с уже указанными.
t=б \frac{ \pi }{3}+ \pi n,n \in Z.  на промежутке [0;2π]  два значения: \frac{ \pi }{3} и \frac{4 \pi }{3}= \pi + \frac{ \pi }{3}, на промежутке [-2π;0]  тоже два значения: -\frac{ \pi }{3} и  - \frac{4 \pi }{3}= -(\pi + \frac{ \pi }{3}) остальные  для n \in Z совпадут с уже указанными. Всего на окружности отмечено 4 точки:  (\frac{ \pi }{3}),  (\frac{4 \pi }{3}),  (-\frac{ \pi }{3}),   (- \frac{4 \pi }{3}).

1) найдите на числовой окружности точку, которая соответствует заданному числу -/2 2 ) найдите на чи
1) найдите на числовой окружности точку, которая соответствует заданному числу -/2 2 ) найдите на чи
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота