1. Первую часть я уже выпоняла. Числовая окружность хорошо иллюстрирует тригонометрические функции. Образно так: общеизвестно - все точки на числовой плоскости имеют две координаты: абсциссу и ординату. Точки, которые лежат на единичной окружности тоже имеют две координаты, но у них особое название: абсциссу называют косинусом и ординату - синусом. На единичной окружности есть круговая шкала: начало шкалы в точке пересечения с осью Ох - по круговой шкале это начало отсчета, там стоит 0. против часовой стрелки откладываются положительные значения, по часовой - отрицательные. Значения откладываются в радианах, мы знаем что 180°= π радиан, 360°=2π, 90°=π/2, 270°=3π/2.Эти значения соответствуют точкам пересечения единичной окружности с осями координат. 4π=720°, это два оборота, т е в той же точке что и 2π. (Красные точки) 2. Если перебрать целые значения n, то получим числа: .......Это точки числовой окружности отмеченные, начиная с 0 через , (т е через полкруга). против часовой стрелки положительные значения, по часовой - отрицательные. Положительные значения из промежутка [0;2π] мы можем показать на окружности, таких значений два: 0 и остальные будут совпадать с уже указанными, отрицательные значения из промежутка [-2π;0], их тоже два 0 и , для данной формулы тоже совпадут с уже указанными. Это точки числовой окружности отмеченные, начиная с через , (т е через полкруга) против часовой стрелки положительные значения, и начиная с через , (т е через полкруга) по часовой - отрицательные. И опять на промежутке [0;2π] мы можем показать на окружности только два значения: и , остальные совпадут с уже указанными, и на промежутке [-2π;0] тоже два значения: и тоже совпадут с уже указанными.В целом мы отметили на окружности 4 точки: , , , . Короче На промежутке [0;2π] два значения: 0 и , остальные для совпадут с уже указанными. на промежутке [0;2π] два значения: и , на промежутке [-2π;0] тоже два значения: и остальные для совпадут с уже указанными. Всего на окружности отмечено 4 точки: , , , .
ОДЗ: 21 + 4x - x² > 0
21 + 4x - x² ≠ 1
7 - x > 0
x + 3 > 0
x + 3 ≠ 1
21 + 4x - x² > 0
x² - 4x - 21 < 0
x² - 4x - 21 = 0
По теореме Виета: x₁ = -3, x₂ = 7.
x² - 4x - 21 < 0
x ∈ (-3; 7)
21 + 4x - x² ≠ 1
x² - 4x - 20 ≠ 0
D = 16 + 80 = 96
7 - x > 0
x < 7
x + 3 > 0
x > -3
x + 3 ≠ 1
x ≠ -2
Окончательно, ОДЗ: x ∈ (-3; ) U (; -2) U (-2; ) U (; 7).
Решаем само неравенство:
Замена:
t ≠ 1
t ≠ -1
Делаем обратную замену:
Учитывая ОДЗ, окончательный ответ: x ∈ (-3; ) U (; -2) U (-2; 2) U (2; ) U (; 7).
Числовая окружность хорошо иллюстрирует тригонометрические функции.
Образно так: общеизвестно - все точки на числовой плоскости имеют две координаты: абсциссу и ординату. Точки, которые лежат на единичной окружности тоже имеют две координаты, но у них особое название: абсциссу называют косинусом и ординату - синусом.
На единичной окружности есть круговая шкала: начало шкалы в точке пересечения с осью Ох - по круговой шкале это начало отсчета, там стоит 0. против часовой стрелки откладываются положительные значения, по часовой - отрицательные. Значения откладываются в радианах, мы знаем что 180°= π радиан, 360°=2π, 90°=π/2, 270°=3π/2.Эти значения соответствуют точкам пересечения единичной окружности с осями координат. 4π=720°, это два оборота, т е в той же точке что и 2π. (Красные точки)
2. Если перебрать целые значения n, то получим числа:
.......Это точки числовой окружности отмеченные, начиная с 0 через , (т е через полкруга). против часовой стрелки положительные значения, по часовой - отрицательные. Положительные значения из промежутка [0;2π] мы можем показать на окружности, таких значений два: 0 и остальные будут совпадать с уже указанными, отрицательные значения из промежутка [-2π;0], их тоже два 0 и , для данной формулы тоже совпадут с уже указанными.
Это точки числовой окружности отмеченные, начиная с через , (т е через полкруга) против часовой стрелки положительные значения, и начиная с через , (т е через полкруга) по часовой - отрицательные. И опять на промежутке [0;2π] мы можем показать на окружности только два значения: и , остальные совпадут с уже указанными, и на промежутке [-2π;0] тоже два значения: и тоже совпадут с уже указанными.В целом мы отметили на окружности 4 точки: , , , .
Короче
На промежутке [0;2π] два значения: 0 и , остальные для совпадут с уже указанными.
на промежутке [0;2π] два значения: и , на промежутке [-2π;0] тоже два значения: и остальные для совпадут с уже указанными. Всего на окружности отмечено 4 точки: , , , .