F(x) = 1,3x - 3,9 1) выясним сначала при каких значениях аргумента f(x)=0, т.е. 1,3x - 3,9 = 0 1,3x = 3,9 | : 1,3 x = 32) при каких значениях аргумента f(x) < 0 ? 1,3x - 3,9 < 0 x < 3 3) при каких значениях аргумента f(x) > 0 ? 1,3x - 3,9 > 0 x > 3 т.к. угловой коэффициент (это коэффициент при х) данной линейной функции положителен , значит функция возрастающая. ответ: f(x)=0 при x = 3; f(x) < 0 при x < 3; f(x) > 0 при x > 3; функция возрастающая.
Пусть v1 км/ч- скорость первого автомобиля, v2 км/ч - второго, t - время от старта автомобилей до их встречи. Тогда первый автомобиль находился в пути время t1=t+1,6 ч, а второй - время t2=t+2,5 ч, поэтому v1*(t+1,6)=v2*(t+2,5)=180. Кроме того, v1*t+v2*t=180. Получаем систему уравнений:
v1*(t+1,6)=180 v2*(t+2,5)=180 v1*t+v2*t=180
Из первого уравнения находим v1=180/(t+1,6), из второго - v2=180/(t+2,5). Подставляя эти выражения в третье уравнение, получаем уравнение:
180*t/(t+1,6)+180*t/(t+2,5)=180, или t/(t+1,6)+t/(t+2,5)=1.Отсюда следует уравнение t*(t+2,5)+t*(t+1,6)=t²+4,1*t+4, или 2*t²=t²+4. Тогда t²=4 и t=√4=2 ч. Отсюда v1=180/(2+1,6)=50 км/ч и v2=180/(2+2,5)=40 км/ч. ответ: 50 и 40 км/ч.
v1*(t+1,6)=180
v2*(t+2,5)=180
v1*t+v2*t=180
Из первого уравнения находим v1=180/(t+1,6), из второго - v2=180/(t+2,5). Подставляя эти выражения в третье уравнение, получаем уравнение:
180*t/(t+1,6)+180*t/(t+2,5)=180, или t/(t+1,6)+t/(t+2,5)=1.Отсюда следует уравнение t*(t+2,5)+t*(t+1,6)=t²+4,1*t+4, или 2*t²=t²+4. Тогда t²=4 и t=√4=2 ч. Отсюда v1=180/(2+1,6)=50 км/ч и v2=180/(2+2,5)=40 км/ч. ответ: 50 и 40 км/ч.