Еще раз. Вот рисунок. Площадь текста S(t) = a*b = 363 кв.см. Поля сверху и снизу - это 2 полоски шириной 2 см и длиной а см. Поля слева и справа - это 2 полоски шириной 1,5 см и длиной b см. Поля в углах (залиты красным) - это 4 прямоугольника 2 х 1,5 см. Площадь полей S(p) = 2*2a + 1*1,5b + 4*2*1,5 = 4a + 3b + 12 кв.см. Площадь листа выразим через одну переменную а S = S(t) + S(p) = 363 + 4a + 3*363/a + 12 -> min Возьмем производную от площади и приравняем ее к 0 S ' = 4 - 3*363/a^2 = 0 4 = 3*363/a^2 a^2 = 3*363/4 = 3*3*121/4 = 3^2*11^2/2^2 a = 3*11/2 = 33/2 = 16,5 см b = 363/a = 363/16,5 = 3*121*2/33 = 11*2 = 22 см. Размер листа Длина a + 2*1,5 = a + 3 = 16,5 + 3 = 19,5 см Высота b + 2*2 = b + 4 = 22 + 4 = 26 см. ответ: 19,5 х 26 см
1) x^2-10x+30<0 y(x)= x^2-10x+30 - функция квадратичная с ветвями, направленными вверх( старший коэффициент >0).Решим квадратное уравнение: x^2-10x+30=0; D= (-10)^2-4*1*30=-20. Видим, что дискриминант меньше нуля, поэтому парабола будет полностью лежать выше оси Х, не пересекая эту ось ни в одной точке, и все значения У параболы, соответственно, будут принимать положительные значения. Поэтому, неравенство x^2-10x+30<0 не имеет решений. 2) x^2+4x+5<0 y(x)=x^2+4x+5 - квадратичная функция, ветви параболы направлены вверх. Решим квадратное уравнение: x^2+4x+5=0 D=4^2-4*1*5=-4. Дискриминант меньше нуля, поэтому неравенство не имеет решений( также как и в первом случае). 3) 4x^2-9x+7<0 Решим уравнение: 4x^2-9x+7=0; D=(-9)^2-4*4*7=-31. Неравенство не имеет решений.
Площадь текста S(t) = a*b = 363 кв.см.
Поля сверху и снизу - это 2 полоски шириной 2 см и длиной а см.
Поля слева и справа - это 2 полоски шириной 1,5 см и длиной b см.
Поля в углах (залиты красным) - это 4 прямоугольника 2 х 1,5 см.
Площадь полей S(p) = 2*2a + 1*1,5b + 4*2*1,5 = 4a + 3b + 12 кв.см.
Площадь листа выразим через одну переменную а
S = S(t) + S(p) = 363 + 4a + 3*363/a + 12 -> min
Возьмем производную от площади и приравняем ее к 0
S ' = 4 - 3*363/a^2 = 0
4 = 3*363/a^2
a^2 = 3*363/4 = 3*3*121/4 = 3^2*11^2/2^2
a = 3*11/2 = 33/2 = 16,5 см
b = 363/a = 363/16,5 = 3*121*2/33 = 11*2 = 22 см.
Размер листа
Длина a + 2*1,5 = a + 3 = 16,5 + 3 = 19,5 см
Высота b + 2*2 = b + 4 = 22 + 4 = 26 см.
ответ: 19,5 х 26 см
y(x)= x^2-10x+30 - функция квадратичная с ветвями, направленными вверх( старший коэффициент >0).Решим квадратное
уравнение: x^2-10x+30=0; D= (-10)^2-4*1*30=-20. Видим, что дискриминант меньше нуля, поэтому парабола будет полностью лежать выше оси Х, не пересекая эту ось ни в одной точке, и все значения У параболы, соответственно, будут принимать положительные значения. Поэтому, неравенство x^2-10x+30<0
не имеет решений.
2) x^2+4x+5<0
y(x)=x^2+4x+5 - квадратичная функция, ветви параболы направлены вверх. Решим квадратное уравнение:
x^2+4x+5=0
D=4^2-4*1*5=-4. Дискриминант меньше нуля, поэтому неравенство
не имеет решений( также как и в первом случае).
3) 4x^2-9x+7<0
Решим уравнение: 4x^2-9x+7=0; D=(-9)^2-4*4*7=-31. Неравенство не имеет решений.