пусть одна сторона х см,другая у см.
S=x·y
P=2·(x+y)
2·(x+y)=60
x+y=30
(х+10) - сторона увеличивается на 10,
(y-6) - другая сторона уменьшается на 6
s=(x+10)·(y-6)
По условию s уменьшается на 32 по сравнению с S
Составляем уравнение:
x·y- (x+10)·(y-6)=32
x·y- (x·y+10y-6x-60)=32
x·y- x·y-10y+6x+60=32
28=10y-6x
Система
{x+y=30
{28=10y-6x
{y=30-x
{28=10·(30-x)-6x
16x=272
x=17
y=30-x=13
О т в е т. 13 и 17
пусть одна сторона х см,другая у см.
S=x·y
P=2·(x+y)
2·(x+y)=60
x+y=30
(х+10) - сторона увеличивается на 10,
(y-6) - другая сторона уменьшается на 6
s=(x+10)·(y-6)
По условию s уменьшается на 32 по сравнению с S
Составляем уравнение:
x·y- (x+10)·(y-6)=32
x·y- (x·y+10y-6x-60)=32
x·y- x·y-10y+6x+60=32
28=10y-6x
Система
{x+y=30
{28=10y-6x
{y=30-x
{28=10·(30-x)-6x
16x=272
x=17
y=30-x=13
О т в е т. 13 и 17