Пусть х км/ч - это скорость, с которой ехал велосипедист из пункта А в пункт В Так как длина путь из пункта А в пункт В = 27 километров. Тогда путь из пункста А в пункт В он проехал за 27/х(часов) - потому что на обратном пути велосипедист уменьшил скорость на 3км/ч, следовательно: х-3км/ч - скорость велосипедиста.(потому что обратный путь был короче на 7 километров), то есть он равен: 27-7=20(км), следовательно: 20/(х-3) часов - это он потратил на обратный путь. А по условию на обратный путь он затратил всего 10минут, а это 1/6 часа меньше. Составим уравнение: 27/х-1/6=20/(х-3) Надо обе части умножить на 6х*(х-3) не равное нулю, тоесть х≠0 и х≠3(ЭТО НАМ НЕ ПОДХОДИТ)=> 162*(х-3)-х*(х-3)=120х 162х-486-х2+3х-120=0 Теперь на всё это умножить на (-1) и привести конечно-же подобные слогаемые. х2-45х+486=0 Всё получим мы через теорему Виета: х1+х2=45 х1*х2=486 х1=18 х2=27 Либо через Дискриминант, то будет так. Дискриминант=(-45)2-4*2*486=2025+1944=3969 х1,2=54(плюс/минус)63/4 х1 = 18 х2 = 27 Здесь мы видим, что оба корня нам подходят. Итак велосипедист ехал со скоростью 18 км/ч или со скоростью 27 км/ч из пункта А в пункт В. ответ: 18км/ч, 27км/ч.
1. y= (1/x) + 34
2.(не уверен, но вроде) y=∛(1-х^3 )
3. да
Объяснение:
1. как делается обратная функция: мы выражаем х через у, а потом в получившейся формуле меняем х на у
х-34=1/у
х=(1/у)+34
у=(1/х)+34
2. у^3=1-х^3
х^3=1-у^3
у=∛(1-х^3 )
3. что мы сделаем: мы возьмём произвольные х1 и х2, такие что х1>х2
и приведем к виду функции, если окажется, что выражение с х1 остается большим значит функция увеличивается, нет - наоборот.(не уверен в
х1>х2
-7х1<-7х2
10-7х1<10-7х2
выражение с х2 больше значит функция уменьшается, ответ да.