2.17. из трехзначных а 5 делятся 100, 105,110; 115..,995
Пусть всего n чисел делится на 5, тогда увидев, что их можно посчитать с формулы n- го члена арифметической прогрессии, получим aₙ=a₁+d*(n-1), где а₁=100; aₙ=995, d=5, найдем n. подставим данные в формулу. получим
995=100+5*(n-1); 199=20=n-1⇒n=199+1-20=180
значит, трёхзначных чисел, делящихся на 5, 180.
Аналогично найдем количество трёхзначных чисел, делящихся на 7.
105, 112, 119...,994; а₁=105; aₙ=994, d=7.
994=105+7*(n-1); n-1=142-15; n=128
значит, трёхзначных чисел, делящихся на 7, 128.
на два делятся четные. Всего 999-99=900 трехзначных, половина из них четные. т.е. четных 450
Тогда общее количество искомых чисел, 450+180+128=758
2.17. из трехзначных а 5 делятся 100, 105,110; 115..,995
Пусть всего n чисел делится на 5, тогда увидев, что их можно посчитать с формулы n- го члена арифметической прогрессии, получим aₙ=a₁+d*(n-1), где а₁=100; aₙ=995, d=5, найдем n. подставим данные в формулу. получим
995=100+5*(n-1); 199=20=n-1⇒n=199+1-20=180
значит, трёхзначных чисел, делящихся на 5, 180.
Аналогично найдем количество трёхзначных чисел, делящихся на 7.
105, 112, 119...,994; а₁=105; aₙ=994, d=7.
994=105+7*(n-1); n-1=142-15; n=128
значит, трёхзначных чисел, делящихся на 7, 128.
на два делятся четные. Всего 999-99=900 трехзначных, половина из них четные. т.е. четных 450
Тогда общее количество искомых чисел, 450+180+128=758
1) точки пересечения
x^3=x
x^3-x=0
x(x^2-1)=0
x=0
x^2=1 x=-1 x=1
так как эти точки принадлежат прямой у=х то в них у=х
то есть (-1,1) (0,0) (1,1)
2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1
если х будет > х^3 значит прямая будет выше
2.1) x<-1 возьмем х из этого интервала например х=-2
x^3=-8
x>x^3 значит на этом интервале прямая выше
2.2) -1<x<0 например х=-0,5
x^3=-0,125 x<x^3 прямая ниже
2.3) 0<x<1 например х=0,5
x^3=0,125 x>x^3 прямая выше
2.4) x>1 например х=2
x^3=8 x<x^3 прямая выше
таким образом
прямая выше при x<-1 и при 0<x<1
Объяснение: