Для решения задачи возьмем первоначальное количество яблонь на 1 участке за х. Если с 1 участка пересадить 1 яблоню на второй, то количество яблонь на первом выразим как (х – 1) яблонь. Тогда количество яблонь на 2 участке можно выразить как 3(х – 1). Известно, что всего на двух участках было 84 яблони. Составим и решим уравнение: (х – 1) + 3(х - 1) = 84 х – 1 + 3х – 3 = 84 4х = 84 + 3 + 1 = 88 х = 22 Значит 22 яблони было первоначально на первом участке. Найдем сколько было первоначально яблонь на втором участке: 84 – 22 = 62 Произведем проверку: Если от 22 яблонь на 1 участке пересадить одну на 2 участок, то там останется 21 яблоня, что будет в три раза меньше, чем станет на втором участке - 63 яблони. 21 + 63 = 84 ответ: На втором участке изначально было 62 яблони.
(х – 1) + 3(х - 1) = 84
х – 1 + 3х – 3 = 84
4х = 84 + 3 + 1 = 88
х = 22
Значит 22 яблони было первоначально на первом участке.
Найдем сколько было первоначально яблонь на втором участке:
84 – 22 = 62
Произведем проверку:
Если от 22 яблонь на 1 участке пересадить одну на 2 участок, то там останется 21 яблоня, что будет в три раза меньше, чем станет на втором участке - 63 яблони.
21 + 63 = 84
ответ: На втором участке изначально было 62 яблони.
1) y=2sin(4x)-8cos(x/4)+(1/2)*tg(2x)-(1/12)*ctg(6x)
y ' =8cos(4x)+2sin(x/4)+1/cos^2(x)+sin^2(x)/2
2) y=sin(x/4)+12cos(x/3)-10tg(x/2)+5ctg(2x)
y ' = cos(x/4)/4-sin(x/3)/3-5/cos^2(x/2)+2*sin^2(2x)/5
3) y=(8/12)*sin(3x/4)-(4/3)*cos(3x/4)-40ctg(x/5)-tg(8x)
y ' = (1/2)*sin(3x/4)+sin(3x/4)+8/sin^2(x)-8/cos^2(x)
4) y =cos(2x)*x^5
y ' =-2sin(2x)*x^5+5cos(2x)*x^4
5) y=sin(2x)/cos(4x)
y ' =2cos(2x)/cos(4x)+4sin(2x)/cos^2(4x)
6) y=8cos(4x-pi/3)
y ' =-32sin(4x-pi/3)
7) y=10x^5+7x^4-8x^3+4/x-9sqrt(x)-4x+1,1
y ' = 50x^4+28x^3-24x^2-4/x^2-9/2*sqrt(x)-4
8) y=sin(3x)*tg(3x)
y ' = 3cos(3x)*tg(3x)+sin(3x)*3/cos^2(3x)
9) y=5x^6+2x^3+6x^2-6x-8
y ' = 30x^5+6x^2+12x-6
y '' = 150x^4+12x+12
10) y=4sin(2x)-16cos(4/x)
y ' = 8cos(2x)+64sin(x/4)/x^2
y '' =-16sin(2x) +16cos(x/4)/x^2-128sin(x/4)/x^3