Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
zellen04
02.04.2021 10:55 •
Алгебра
ть,пліз)))буду дуже вдячна
Показать ответ
Ответ:
porshe04
03.12.2020 22:49
Добрый день! Разберемся с этим уравнением шаг за шагом.
1. Для начала выделим все корни (знаки √) в отдельные части уравнения:
√x - √2x + 3 = √x + 4 - √(2x-1)
2. Теперь перенесем все части уравнения с корнями на одну сторону:
√x - √x - √(2x-1) + √2x = 4 - 3 - 3
При подходе к этой части уравнения обратите внимание, что мы вычитаем (√x) из (√x) - это отменяется.
Получается:
- √(2x-1) + √2x = 1
3. Следующим шагом избавимся от корней в левой и правой частях уравнения. Для этого возводим все в квадрат:
(- √(2x-1) + √2x)^2 = 1^2
Это приведет к следующему:
(2x-1) + 2√(2x-1)√2x + 2x = 1
4. Теперь приведем подобные слагаемые в уравнении:
2x - 1 + 2√2x(√(2x-1) + 1) = 1
5. Перенесем все константы на одну сторону, а переменные на другую:
2√2x(√(2x-1) + 1) = 1 - 2x + 1
2√2x(√(2x-1) + 1) = -2x + 2
6. Теперь обработаем уравнение по частям. Разделим уравнение на 2:
√2x(√(2x-1) + 1) = -x + 1
7. Разделим уравнение на √2x:
(√(2x-1) + 1) = (-x + 1) / √2x
8. Изолируем корень (√(2x-1)):
√(2x-1) = (-x + 1) / √2x - 1
9. Избавимся от знаменателя в правой части уравнения, умножив на √2x:
√(2x-1) = (-x + 1) - √2x
10. Припишем корень √(2x-1) к левой части уравнения и переместим все переменные на правую сторону:
√2x + √(2x-1) + x - 1 = 0
11. Теперь упростим уравнение, комбинируя подобные члены:
(2√2x + √(2x-1)) + (x - 1) = 0
12. На данный момент мы знаем, что (√2x + √(2x-1)) хочется обозначить как "A". Тогда можно преобразовать уравнение:
A + (x - 1) = 0
13. Вычитаем (x - 1) из обеих сторон уравнения:
A = -(x - 1)
14. Раскрывая скобки в правой части уравнения, получим:
A = -x + 1
15. Вспоминаем, что "A" обозначает (√2x + √(2x-1)), и подставляем это обратно в уравнение:
√2x + √(2x-1) = -x + 1
16. Умножаем обе стороны уравнения на (-1):
-√2x - √(2x-1) = x - 1
17. Теперь сложим два результата, полученных на шагах 12 и 16:
√2x + √(2x-1) = -√2x - √(2x-1)
18. Теперь выразим √2x через другие переменные:
2√2x = -2√(2x-1)
19. Теперь возведем обе стороны уравнения в квадрат:
(2√2x)^2 = (-2√(2x-1))^2
Это даст:
8x = 8(2x-1)
20. Упростим правую часть уравнения:
8x = 16x - 8
21. Перенесем все члены с переменными на одну сторону, а константы на другую:
16x - 8x = 8
8x = 8
22. Разделим обе стороны уравнения на 8:
x = 1
Ответ: x = 1.
0,0
(0 оценок)
Ответ:
astasevbogdanp08dn2
23.03.2021 01:18
Добрый день! Давайте решим задачи по порядку, чтобы каждый шаг был понятен.
1а) Нам нужно найти сумму и разность многочленов:
7х^2 – 5х + 3 и 7х^2 – 5.
Для суммы сложим каждый член многочленов:
(7х^2 – 5х + 3) + (7х^2 – 5) = 7х^2 + 7х^2 - 5х - 5 + 3 = 14х^2 - 5х - 2.
Для разности вычитаем каждый член второго многочлена из первого:
(7х^2 – 5х + 3) - (7х^2 – 5) = 7х^2 - 7х^2 - (-5х + 5) = -5х + 5.
1б) Теперь рассмотрим следующее выражение:
3x + 1 и –3х^2 – 3х + 1.
Сначала приведем подобные слагаемые в одну скобку:
(3x + 1) + (-3х^2 – 3х + 1) = 3x - 3х^2 - 3х + 1 + 1 = -3х^2 + 3x - 2.
2) Для упрощения выражения
(8c^2 + 3c) + (-7c^2 – 11c + 3) – (-3c^2 – 4),
сначала выполним операцию с отрицательными числами во второй скобке:
(8c^2 + 3c) + (-7c^2 – 11c + 3) + (3c^2 + 4).
Затем просуммируем или вычитаем подобные слагаемые:
8c^2 – 7c^2 + 3c^2 + 3c – 11c + 4 + 3 = 4c^2 – 8c + 7.
3) Теперь перейдем к уравнению:
(3 – 5.8x) – (2.2x + 3) = 16.
Сначала выполним операцию в скобках:
3 - 5.8x - 2.2x - 3 = 16.
Затем сложим или вычтем подобные слагаемые:
-5.8x - 2.2x = -8x,
3 - 3 = 0.
Теперь уравнение примет вид:
-8x = 16.
Для решения уравнения, разделим обе части на -8:
x = 16 / -8,
x = -2.
Ответ: x = -2.
4) Наконец, найдем значение выражения
6a^2 – (9a^2 – 5ab) + (3a^2 – 2ab),
если а = -0.15, в = 6.
Подставим значения переменных и выполним операции:
6(-0.15)^2 – (9(-0.15)^2 – 5(-0.15)(6)) + (3(-0.15)^2 – 2(-0.15)(6)),
= 6(0.0225) – (9(0.0225) – 5(-0.9)) + (3(0.0225) – 2(-0.9)),
= 0.135 – (0.2025 + 4.5) + (0.0675 + 1.8),
= 0.135 – 4.7025 + 1.8675,
= -2.7.
Ответ: значение выражения равно -2.7.
0,0
(0 оценок)
Популярные вопросы: Алгебра
varabunia12
31.07.2022 02:43
Преобразуйте в многочлен стандартного вида выражение (5х^2+6х--3х-4)...
Ангелина0113
31.07.2022 02:43
Найдите область определения функции y=1 - √3tgx-√3...
Golovagolovin
31.07.2022 02:43
Найдите область определения функции y=3+√cos (x/3)...
Котанская
20.11.2022 15:56
Выполните сложение дробей x/x-5 + 5/5-x, если x не равен 5...
grinanovatana2
20.11.2022 15:56
Решите , на х^2+9х+14 0 х^2+9х+14 0 х^2+9х+14 =0 х^2+9х+14 =0...
никт11
20.11.2022 15:56
Одне число в 3 рази більше від другого, а їхня сума дорівнює 9. якщо перше число позначити через х, а друге - через у, то яка система відповідає умові?...
pe4cha
20.11.2022 15:56
Решите неравенства подробно -x^2-6x-9 0 -x^2-6x-9 0...
ekozhushkova
20.11.2022 15:56
Скомбинаторикой 1) в каждом из двух заплывов по шести дорожкам участвует 6 пловцов. дорожки между пловцами в каждом заплыве разыгрываются по жребию. найдите число всех возможных...
фирдавс6
22.10.2020 18:58
Мне нужно решить всё это кроме 6...
numucirad
06.02.2023 21:20
Дан прямоугольный треугольник АВС с катетами АВ=42 и ВС=56. Окружность, проходящая через точку В пересекает сторону АВ в точке Р, сторону ВС в точке Q, а сторону АС в точках K и...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
1. Для начала выделим все корни (знаки √) в отдельные части уравнения:
√x - √2x + 3 = √x + 4 - √(2x-1)
2. Теперь перенесем все части уравнения с корнями на одну сторону:
√x - √x - √(2x-1) + √2x = 4 - 3 - 3
При подходе к этой части уравнения обратите внимание, что мы вычитаем (√x) из (√x) - это отменяется.
Получается:
- √(2x-1) + √2x = 1
3. Следующим шагом избавимся от корней в левой и правой частях уравнения. Для этого возводим все в квадрат:
(- √(2x-1) + √2x)^2 = 1^2
Это приведет к следующему:
(2x-1) + 2√(2x-1)√2x + 2x = 1
4. Теперь приведем подобные слагаемые в уравнении:
2x - 1 + 2√2x(√(2x-1) + 1) = 1
5. Перенесем все константы на одну сторону, а переменные на другую:
2√2x(√(2x-1) + 1) = 1 - 2x + 1
2√2x(√(2x-1) + 1) = -2x + 2
6. Теперь обработаем уравнение по частям. Разделим уравнение на 2:
√2x(√(2x-1) + 1) = -x + 1
7. Разделим уравнение на √2x:
(√(2x-1) + 1) = (-x + 1) / √2x
8. Изолируем корень (√(2x-1)):
√(2x-1) = (-x + 1) / √2x - 1
9. Избавимся от знаменателя в правой части уравнения, умножив на √2x:
√(2x-1) = (-x + 1) - √2x
10. Припишем корень √(2x-1) к левой части уравнения и переместим все переменные на правую сторону:
√2x + √(2x-1) + x - 1 = 0
11. Теперь упростим уравнение, комбинируя подобные члены:
(2√2x + √(2x-1)) + (x - 1) = 0
12. На данный момент мы знаем, что (√2x + √(2x-1)) хочется обозначить как "A". Тогда можно преобразовать уравнение:
A + (x - 1) = 0
13. Вычитаем (x - 1) из обеих сторон уравнения:
A = -(x - 1)
14. Раскрывая скобки в правой части уравнения, получим:
A = -x + 1
15. Вспоминаем, что "A" обозначает (√2x + √(2x-1)), и подставляем это обратно в уравнение:
√2x + √(2x-1) = -x + 1
16. Умножаем обе стороны уравнения на (-1):
-√2x - √(2x-1) = x - 1
17. Теперь сложим два результата, полученных на шагах 12 и 16:
√2x + √(2x-1) = -√2x - √(2x-1)
18. Теперь выразим √2x через другие переменные:
2√2x = -2√(2x-1)
19. Теперь возведем обе стороны уравнения в квадрат:
(2√2x)^2 = (-2√(2x-1))^2
Это даст:
8x = 8(2x-1)
20. Упростим правую часть уравнения:
8x = 16x - 8
21. Перенесем все члены с переменными на одну сторону, а константы на другую:
16x - 8x = 8
8x = 8
22. Разделим обе стороны уравнения на 8:
x = 1
Ответ: x = 1.
1а) Нам нужно найти сумму и разность многочленов:
7х^2 – 5х + 3 и 7х^2 – 5.
Для суммы сложим каждый член многочленов:
(7х^2 – 5х + 3) + (7х^2 – 5) = 7х^2 + 7х^2 - 5х - 5 + 3 = 14х^2 - 5х - 2.
Для разности вычитаем каждый член второго многочлена из первого:
(7х^2 – 5х + 3) - (7х^2 – 5) = 7х^2 - 7х^2 - (-5х + 5) = -5х + 5.
1б) Теперь рассмотрим следующее выражение:
3x + 1 и –3х^2 – 3х + 1.
Сначала приведем подобные слагаемые в одну скобку:
(3x + 1) + (-3х^2 – 3х + 1) = 3x - 3х^2 - 3х + 1 + 1 = -3х^2 + 3x - 2.
2) Для упрощения выражения
(8c^2 + 3c) + (-7c^2 – 11c + 3) – (-3c^2 – 4),
сначала выполним операцию с отрицательными числами во второй скобке:
(8c^2 + 3c) + (-7c^2 – 11c + 3) + (3c^2 + 4).
Затем просуммируем или вычитаем подобные слагаемые:
8c^2 – 7c^2 + 3c^2 + 3c – 11c + 4 + 3 = 4c^2 – 8c + 7.
3) Теперь перейдем к уравнению:
(3 – 5.8x) – (2.2x + 3) = 16.
Сначала выполним операцию в скобках:
3 - 5.8x - 2.2x - 3 = 16.
Затем сложим или вычтем подобные слагаемые:
-5.8x - 2.2x = -8x,
3 - 3 = 0.
Теперь уравнение примет вид:
-8x = 16.
Для решения уравнения, разделим обе части на -8:
x = 16 / -8,
x = -2.
Ответ: x = -2.
4) Наконец, найдем значение выражения
6a^2 – (9a^2 – 5ab) + (3a^2 – 2ab),
если а = -0.15, в = 6.
Подставим значения переменных и выполним операции:
6(-0.15)^2 – (9(-0.15)^2 – 5(-0.15)(6)) + (3(-0.15)^2 – 2(-0.15)(6)),
= 6(0.0225) – (9(0.0225) – 5(-0.9)) + (3(0.0225) – 2(-0.9)),
= 0.135 – (0.2025 + 4.5) + (0.0675 + 1.8),
= 0.135 – 4.7025 + 1.8675,
= -2.7.
Ответ: значение выражения равно -2.7.