Рассмотрим функцию f(t) = (t - 1)/(t^2 + 5). Она определена и непрерывна вместе со всеми производными на всей действительной оси. f'(t) = ((t^2 + 5) - 2t(t - 1))/(t^2 + 5)^2 = (6 - (t - 1)^2)/(t^2 + 5)^2 f'(t) >= 0 при 1 - sqrt(6) <= t <= 1 + sqrt(6) - на этом отрезке она возрастает, вне него - убывает. Тогда xn возрастает при n < 1 + sqrt(6), убывает при n > 1 + sqrt(6). Так как 3 < 1 + sqrt(6) < 4, то на роль максимального претендуют x3 и x4.
При x < -2 будет |x-1| = 1 - x; |x+2| = -x - 2 y = |x-1| - |x+2| = 1 - x - (-x - 2) = 1 - x + x + 2 = 3 При -2 <= x < 1 будет |x+2| = x + 2; |x-1| = 1 - x y = 1 - x - (x + 2) = 1 - 2x - 2 = -2x - 1 При x >= 1 будет |x-1| = x - 1; |x+2| = x + 2 y = x - 1 - (x + 2) = x - 1 - x - 2 = -3 Получается: при x < -2 y = 3; при -2 <= x < 1 y = -2x - 1; при x >= 1 y = -3 При k >= 0 прямая пересекается в 1 точке. При -2 < k < 0 прямая пересекается с графиком в 3 точках. При k = -2 прямая совпадает с частью графика на промежутке [-2; 1]. При k < -2 прямая опять пересекается с графиком в 1 точке.
f'(t) = ((t^2 + 5) - 2t(t - 1))/(t^2 + 5)^2 = (6 - (t - 1)^2)/(t^2 + 5)^2
f'(t) >= 0 при 1 - sqrt(6) <= t <= 1 + sqrt(6) - на этом отрезке она возрастает, вне него - убывает.
Тогда xn возрастает при n < 1 + sqrt(6), убывает при n > 1 + sqrt(6). Так как 3 < 1 + sqrt(6) < 4, то на роль максимального претендуют x3 и x4.
x3 = (3 - 1)/(3^2 + 5) = 2/14 = 1/7
x4 = (4 - 1)/(4^2 + 5) = 3/21 = 1/7
x3 = x4, значит, членов с максимальными значениями 2: n = 3 и n = 4. В ответ пойдёт 3 + 4 = 7.
y = |x-1| - |x+2| = 1 - x - (-x - 2) = 1 - x + x + 2 = 3
При -2 <= x < 1 будет |x+2| = x + 2; |x-1| = 1 - x
y = 1 - x - (x + 2) = 1 - 2x - 2 = -2x - 1
При x >= 1 будет |x-1| = x - 1; |x+2| = x + 2
y = x - 1 - (x + 2) = x - 1 - x - 2 = -3
Получается: при x < -2 y = 3; при -2 <= x < 1 y = -2x - 1; при x >= 1 y = -3
При k >= 0 прямая пересекается в 1 точке.
При -2 < k < 0 прямая пересекается с графиком в 3 точках.
При k = -2 прямая совпадает с частью графика на промежутке [-2; 1].
При k < -2 прямая опять пересекается с графиком в 1 точке.