Tekci Экстремальная погода привела к исчезновению популяции многих бабочек в России и других странах умеренного климата «Оказалось, что многие экстремальные явления крайне негативно влияют на бабочек. Вероятно, что жара зимой заставляет бабочек просыпаться из спячки и затем гибнуть, когда холода позвращаются», - написала в статье эколог Альдина Франко. В 2015 году подсчеты британских ученых и любителей природы показали, что к 2050 году шесть видов бабочек могут полностью исчезнуть в мире, Анализ 37 лет наблюдений показал, что больше всего на жизни бабочек влияют аномальная жара зимой, холод летом, проливные дожди неделями, засухи и другие экстремальные погодные явления, По мнению ученых, странам умеренного пояса, в том числе Великобритании, необходимо предпринять меры по защите бабочек. (111 слов) Источник: https://360tv.ru/news/ekologiya/babochki-stali-propadat-iz-za-anomalnoj- . zhary-holodoy-77900/ На основании текстов заполните таблиц вопросы Текст Текст 2
Тема 1 Стиль 1 Аргумент 1 Целевая аудитория 1 Цель 2 (итого 6б.)
1) 3sinx-√3 cosx=3; Уравнения вида asinx+bcosx=c решаются следующим образом: 1) нужно разделить обе части уравнения на выражение √(a²+b²); a=3, b=-√3; √(3²+(-√3)²)=√(9+3)=√12=2√3; 2) получаем уравнение вида √3/2sinx-1/2cosx=√3/2; (√3/2=cosπ/6, 1/2=sinπ/6); Далее используем формулу сложения (сумму или разность для синуса): sinx*cosπ/6-cosx*sinπ/6=√3/2; sin(x-π/6)=√3/2; x-π/6=(-1)^(k)*arcsin(√3/2)+πk, k∈Z; x-π/6=(-1)^(k)*π/3+πk,k∈Z; x=(-1)^(k)*π/3+π/6+πk, k∈Z. ответ: (-1)^(k)*π/3+π/6+πk, k∈Z.
Во втором уравнении несколько сложней, так как получаются не табличные значения. Для уравнения вида asinx+bcosx=c есть равносильное уравнение sin(x+α)=c/√(a²+b²), где α=arccos a/√(a²+b²), α=arcsin b/√(a²+b²), α=arctg b/a. 2) 4sinx+6cosx=1; a=4, b=6, √(4²+6²)=√(16+36)=√52=2√13; В этом уравнении удобнее взять α=arctg b/a=arctg 6/4=arctg 3/2. Получаем sin(x+arctg 3/2)=√13/26; x=(-1)^(k)*arcsin √13/26-arctg 3/2+πk, k∈Z. ответ: (-1)^(k)*arcsin √13/26-arctg 3/2+πk, k∈Z.
Свежие фрукты содержат 72% воды, значит сухого вещества остается 100-72=28% Сухие фрукты содержат 20% воды, значит сухого вещества в них - 80%. Когда сушат фрукты то испаряется только вода, а сухое вещество остается. В 20 кг свежих фруктов содержится 28% сухого вещества, т.е. 20*28/100=5,6 кг, но идеально высушить фрукты не удается, поэтому часть воды остается, как видно из состава сухофруктов влаги в них в 4 раза меньше, чем сухого вещества, т.е. на 5,6 кг сухого вещества приходится, 5,6/4=1,4кг влаги. Будет 5,6+1,4 = 7кг сухофруктов всё ясно?
Уравнения вида asinx+bcosx=c решаются следующим образом:
1) нужно разделить обе части уравнения на выражение √(a²+b²);
a=3, b=-√3; √(3²+(-√3)²)=√(9+3)=√12=2√3;
2) получаем уравнение вида
√3/2sinx-1/2cosx=√3/2; (√3/2=cosπ/6, 1/2=sinπ/6);
Далее используем формулу сложения (сумму или разность для синуса):
sinx*cosπ/6-cosx*sinπ/6=√3/2;
sin(x-π/6)=√3/2;
x-π/6=(-1)^(k)*arcsin(√3/2)+πk, k∈Z;
x-π/6=(-1)^(k)*π/3+πk,k∈Z;
x=(-1)^(k)*π/3+π/6+πk, k∈Z.
ответ: (-1)^(k)*π/3+π/6+πk, k∈Z.
Во втором уравнении несколько сложней, так как получаются не табличные значения.
Для уравнения вида asinx+bcosx=c есть равносильное уравнение
sin(x+α)=c/√(a²+b²), где α=arccos a/√(a²+b²), α=arcsin b/√(a²+b²), α=arctg b/a.
2) 4sinx+6cosx=1;
a=4, b=6, √(4²+6²)=√(16+36)=√52=2√13;
В этом уравнении удобнее взять α=arctg b/a=arctg 6/4=arctg 3/2.
Получаем
sin(x+arctg 3/2)=√13/26;
x=(-1)^(k)*arcsin √13/26-arctg 3/2+πk, k∈Z.
ответ: (-1)^(k)*arcsin √13/26-arctg 3/2+πk, k∈Z.