1) а) F'(x)=3*x^2+8*x-5+0
Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x)
б) F'(x)=3*4*x^3-1/x=12*x^3-1/x
Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x)
2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x
След. F'(x)=f(x)
б) F(x)=3*e^x
Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x)
3) F(x)=x^3+2x^2+C,
т. к. (x^3)'=3x^2
(2x^2)'=2*2x=4x
C'=0
1. f(x)=3x^2+4x
След. , F'(x)=f(x)
2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство
5=3+С
С=2
ответ: F(x)=x^3+2x^2+2
4) у=x^2
у=9
x^2=9
х1=-3
х2=3
Границы интегрирования: -3 и 3
Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х
Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54
S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9
Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36
В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
Та как (х²+х-12) - это квадратный трёхчлен, то графиком этой функции является парабола
так как а=1, то ветви параболы будут направлены вверх
Найдём точку пересечения с осью ОХ
у=0, значит х²+х-12=0; Найдём корни по теореме Виета
х ₁= -4; х₂=3
Координаты точек пересечения с осью ОХ: (-4;0) и (3;0)
Координаты точки пересечения с осью ОУ : (0; -12)
при х=0 у= 0²+0-12=-12
Найдём абсцису вершины параболы:
Хв= -1/2*1= - 1/2= -0,5
Ув= (-0,5)²-0,5-12=0,25-12,5=-12,25
Координаты вершины параболы ( -0,5; -12,25)
Ось симметрии параболы х= -0,5
Найдём ещё несколько точек для построения
х -3 2 -2 1
у -6 -6 -10 -10
1) а) F'(x)=3*x^2+8*x-5+0
Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x)
б) F'(x)=3*4*x^3-1/x=12*x^3-1/x
Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x)
2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x
След. F'(x)=f(x)
б) F(x)=3*e^x
Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x)
3) F(x)=x^3+2x^2+C,
т. к. (x^3)'=3x^2
(2x^2)'=2*2x=4x
C'=0
1. f(x)=3x^2+4x
След. , F'(x)=f(x)
2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство
5=3+С
С=2
ответ: F(x)=x^3+2x^2+2
4) у=x^2
у=9
x^2=9
х1=-3
х2=3
Границы интегрирования: -3 и 3
Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х
Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54
S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9
Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36
В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
Та как (х²+х-12) - это квадратный трёхчлен, то графиком этой функции является парабола
так как а=1, то ветви параболы будут направлены вверх
Найдём точку пересечения с осью ОХ
у=0, значит х²+х-12=0; Найдём корни по теореме Виета
х ₁= -4; х₂=3
Координаты точек пересечения с осью ОХ: (-4;0) и (3;0)
Координаты точки пересечения с осью ОУ : (0; -12)
при х=0 у= 0²+0-12=-12
Найдём абсцису вершины параболы:
Хв= -1/2*1= - 1/2= -0,5
Ув= (-0,5)²-0,5-12=0,25-12,5=-12,25
Координаты вершины параболы ( -0,5; -12,25)
Ось симметрии параболы х= -0,5
Найдём ещё несколько точек для построения
х -3 2 -2 1
у -6 -6 -10 -10