2.Статистическая вероятность обрыва нити в течение часа равна p = 10/100 = 0,1 и, следовательно, q = 1 – 0,1 = 0,9; n = 80; k = 7.
Поскольку n велико, то используется локальная теорема Лапласа (23). Вычисляем:
Воспользуемся свойством φ(-x) = φ(x), находим φ(0,37) ≈ 0,3726, а затем вычисляем искомую вероятность:
Таким образом, вероятность того, что в течение часа на 80 веретенах произойдет 7 обрывов нити, приближенно равна 0,139.
Наивероятнейшее число k0 наступлений события при повторных испытаниях определим по формуле (14). Находим: 7,1 < k0 < 8,1. Поскольку k0 может быть только целым числом, то k0 = 8.
Имеется решения, прямой и в виде уравнения. Рассмотрим все
Объяснение:
1) 70-40=30% разница
2)120:30=4(г) в 1 проценте
3)4*40=160(г) соли первоночально
ответ: 160 граммов соли первоначально.
40% = 0,4
70% = 0,7
Пусть x – масса всего раствора, тогда:
0,4x + 120 = 0,7x
0,4x – 0,7x = -120
-0,3x = 120
x = -120 : (-0,3)
x = 400 (г) – масса раствора.
0,4 ⋅ 400 = 160 (г) – соли, было в растворе первоначально.
ответ: 160 грамм соли первоначально.
( советую решать уравнением, потому что это более правильное решение)
Объяснение:
1.Так как количество опытов n = 700 довольно велико, то используем формулы Лапласа.
а) Задано: n = 700, p = 0,35, k = 270.
Найдем P700(270). Используем локальную теорему Лапласа.
Находим:
Значение функции φ(x) найдем из таблицы:
б) Задано: n = 700, p = 0,35, a = 230, b = 270.
Найдем P700(230 < k < 270).
Используем интегральную теорему Лапласа (23), (24). Находим:
Значение функции Ф(x) найдем из таблицы:
в) Задано: n = 700, p = 0,35, a = 270, b = 700.
Найдем P700(k > 270).
2.Статистическая вероятность обрыва нити в течение часа равна p = 10/100 = 0,1 и, следовательно, q = 1 – 0,1 = 0,9; n = 80; k = 7.
Поскольку n велико, то используется локальная теорема Лапласа (23). Вычисляем:
Воспользуемся свойством φ(-x) = φ(x), находим φ(0,37) ≈ 0,3726, а затем вычисляем искомую вероятность:
Таким образом, вероятность того, что в течение часа на 80 веретенах произойдет 7 обрывов нити, приближенно равна 0,139.
Наивероятнейшее число k0 наступлений события при повторных испытаниях определим по формуле (14). Находим: 7,1 < k0 < 8,1. Поскольку k0 может быть только целым числом, то k0 = 8.