Тема добуток різниці і суми двох виразів, то что в скобках это степень (3p-q)(3p+q) (m-4c(2))(m+4c(2)) (x(2)+y(2))(x(2)-y(2) (m(2)-n(2)(m(2)+n(2) (4a-b(3)(4a+b(3)) (5+abc)(5-abc)
1) Если требуется найти ВСЕ ОБЩИЕ РЕШЕНИЯ нескольких уравнений, то говорят, что надо решить систему уравнений.
2) Решением системы уравнений с двумя переменными называют ПАРУ ЗНАЧЕНИЙ ПЕРЕМЕННЫХ,ОБРАЩАЮЩУЮ КАЖДОЕ УРАВНЕНИЕ В ВЕРНОЕ РАВЕНСТВО.
3) Решить систему уравнений - это значит НАЙТИ ВСЕ РЕШЕНИЯ ИЛИ ДОКАЗАТЬ,ЧТО РЕШЕНИЙ НЕТ.
4) Суть графического метода решения системы уравнений состоит в следующем:
а) построить на одной координатор плоскости ГРАФИКИ УРАВНЕНИЯ, ВХОДЯЩИЕ В СИСТЕМУ.
б) найти КООРДИНАТЫ ВСЕХ ТОЧЕК ПЕРЕСЕЧЕНИЯ ПОСТРОЕННЫХ ГРАФИКОВ
в) ПОЛУЧЕННЫЕ ПАРЫ ЧИСЕЛ и будут искомыми решениями
5) Если одно из уравнений системы не имеет решений, то вся система РЕШЕНИЙ НЕ ИМЕЕТ.
6) Если каждое уравнение системы линейных уравнений имеет решение и графиком одного из уравнений является вся плоскость, то система имеет БЕСКОНЕЧНО МНОГО РЕШЕНИЙ.
7) Если графиками уравнений, входящих в систему линейных уравнений, являются прямые, то количество решений этой системы зависит от ВЗАИМНОГО РАСПОЛОЖЕНИЯ ДВУХ ПРЯМЫХ НА ПЛОСКОСТИ:
а) если прямые ПЕРЕСЕКАЮТСЯ, то система имеет единственное решение
б) если прямые СОВПАДАЮТ, то система имеет бесконечно много решений
в) если прямые ПАРАЛЛЕЛЬНЫ, то система решений не имеет.
1) Если требуется найти ВСЕ ОБЩИЕ РЕШЕНИЯ нескольких уравнений, то говорят, что надо решить систему уравнений.
2) Решением системы уравнений с двумя переменными называют ПАРУ ЗНАЧЕНИЙ ПЕРЕМЕННЫХ,ОБРАЩАЮЩУЮ КАЖДОЕ УРАВНЕНИЕ В ВЕРНОЕ РАВЕНСТВО.
3) Решить систему уравнений - это значит НАЙТИ ВСЕ РЕШЕНИЯ ИЛИ ДОКАЗАТЬ,ЧТО РЕШЕНИЙ НЕТ.
4) Суть графического метода решения системы уравнений состоит в следующем:
а) построить на одной координатор плоскости ГРАФИКИ УРАВНЕНИЯ, ВХОДЯЩИЕ В СИСТЕМУ.
б) найти КООРДИНАТЫ ВСЕХ ТОЧЕК ПЕРЕСЕЧЕНИЯ ПОСТРОЕННЫХ ГРАФИКОВ
в) ПОЛУЧЕННЫЕ ПАРЫ ЧИСЕЛ и будут искомыми решениями
5) Если одно из уравнений системы не имеет решений, то вся система РЕШЕНИЙ НЕ ИМЕЕТ.
6) Если каждое уравнение системы линейных уравнений имеет решение и графиком одного из уравнений является вся плоскость, то система имеет БЕСКОНЕЧНО МНОГО РЕШЕНИЙ.
7) Если графиками уравнений, входящих в систему линейных уравнений, являются прямые, то количество решений этой системы зависит от ВЗАИМНОГО РАСПОЛОЖЕНИЯ ДВУХ ПРЯМЫХ НА ПЛОСКОСТИ:
а) если прямые ПЕРЕСЕКАЮТСЯ, то система имеет единственное решение
б) если прямые СОВПАДАЮТ, то система имеет бесконечно много решений
в) если прямые ПАРАЛЛЕЛЬНЫ, то система решений не имеет.
Объяснение:
x₁ = - 2 - √5
x₂ = - 2 + √5
x₃ = -3
x₄ = -1
(x² + 4x - 1)(x² + 4x + 3) = 0
Будем решать методом субституции:
t = x²+4x
Заменяем в исходном уравнении x²+4x на t:
(t - 1)(t + 3) = 0
Ищем корни:
t - 1 = 0
t₁ = 1
t + 3 = 0
t₂ = -3
Теперь приравниваем x²+4x к t₁ и к t₂:
1)
x² + 4x = 1
x² + 4x - 1 = 0
(x + 2)² - 5 = 0
(x + 2)² = 5
Ищем первый корень:
x + 2 = -√5
x₁ = - 2 - √5
Ищем второй корень:
x + 2 = √5
x₂ = - 2 + √5
2)
x² + 4x = -3
x² + 4x + 3 = 0
(x + 2)² - 1 = 0
(x + 2)² = 1
Ищем третий корень:
x + 2 = -1
x₃ = -3
Ищем четвёртый корень:
x + 2 = 1
x₄ = -1