5) для построения чертим координатную плоскость, отмечаем стрелками положительные направления по каждой оси (вверх и вправо),подписываем их (х и у) , отмечаем начало координат (О) и единичные отрезки*
(*) удобнее взять ед отрезок в 2 клетки,
на координатной плоскости отмечаем вершину В, через нее вертикально проводим пунктирную линию - ось симметрии параболы,
ставим нули функции точки (1; 0) и (2; 0)
далее отмечаем точки х=0 у= 2, и симметрично х=3 у= 2
Удобнее всего решать эту задачу, используя единицы измерения скорости – км/мин. А в конце все полученные результаты перевести в км/ч.
Пусть скорость медленного гонщика составляет км/мин.
Раз быстрый гонщик обогнал впервые медленного через 48 минут, то с таким же успехом, мы можем переформулировать это утверждение и так: быстрый гонщик через 48 минут опережал медленного на 8 км (длину одного круга). А значит, их относительная скорость удаления составляет: км/мин.
Из найденного следует, что скорость быстрого гонщика мы можем записать, как: км/мин.
Сказано, что медленный гонщик ехал на 17 минут дольше, а значит, если мы вычтем из времени в пути медленного гонщика время в пути быстрого гонщика, то эта разность и должна составить 17 минут. Ясно, что время в пути для каждого гонщика мы можем найти, разделив полный путь трассы на скорость каждого из них, тогда:
Поскольку так, как это скорость, направленная в заданную сторону (вперёд), то:
Это и есть скорость второго (медленного) гонщика. Осталось только перевести её в км/ч:
15/6 км/мин = 15 км : 6 мин = 150 км : 60 мин = 150 км : час = 150 км/час.
1) у= х2-3х+2
парабола, ветви вверх
2) В(х;у) - вершина
х=3/2 =1,5 у= 2,25-4,5+2 = -0,25 В(1,5; -0,25) - вершина
3) х2-3х+2 = 0
Д= 9-8 = 1
х(1) = (3+1) / 2 = 2
х(2) = (3-1)/ 2 = 1
y=0 при х=1, х=2
4) у>0 при х∈(-∞; 1) U (2; +∞)
у< 0 при х∈(1; 2)
5) для построения чертим координатную плоскость, отмечаем стрелками положительные направления по каждой оси (вверх и вправо),подписываем их (х и у) , отмечаем начало координат (О) и единичные отрезки*
(*) удобнее взять ед отрезок в 2 клетки,
на координатной плоскости отмечаем вершину В, через нее вертикально проводим пунктирную линию - ось симметрии параболы,
ставим нули функции точки (1; 0) и (2; 0)
далее отмечаем точки х=0 у= 2, и симметрично х=3 у= 2
соединяем плавной линией точки. Подписываем график. Всё!
Пусть скорость медленного гонщика составляет км/мин.
Раз быстрый гонщик обогнал впервые медленного через 48 минут, то с таким же успехом, мы можем переформулировать это утверждение и так: быстрый гонщик через 48 минут опережал медленного на 8 км (длину одного круга). А значит, их относительная скорость удаления составляет: км/мин.
Из найденного следует, что скорость быстрого гонщика мы можем записать, как: км/мин.
Сказано, что медленный гонщик ехал на 17 минут дольше, а значит, если мы вычтем из времени в пути медленного гонщика время в пути быстрого гонщика, то эта разность и должна составить 17 минут. Ясно, что время в пути для каждого гонщика мы можем найти, разделив полный путь трассы на скорость каждого из них, тогда:
Поскольку так, как это скорость,
направленная в заданную сторону (вперёд), то:
Это и есть скорость второго (медленного) гонщика.
Осталось только перевести её в км/ч:
15/6 км/мин = 15 км : 6 мин = 150 км : 60 мин = 150 км : час = 150 км/час.
О т в е т : 150 км.