В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
edgarotlichnik55
edgarotlichnik55
06.06.2021 10:28 •  Алгебра

Тема: «Показательная и логарифмическая функция 1. Найдите значение выражения 27l0g; 2 + log18 2 + 210g18 3

2. Найдите функцию, обратную к функции f(x) = 5x+3

3. Найдите область определения функции f(x) = v37x-2 9

4. Решите неравенство log (4x + 3) > -2

5. Решите уравнение 3*+3 2 3×+1 3* = 180

6. Решите систему уравнений

(2log3(x-1) + 3log2y= 7 (5log,(x - 1) + log2y= 11

Показать ответ
Ответ:
diana17171
diana17171
05.04.2020 18:59

ответ:Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками во о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

xn + yn = zn

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод остатков;

метод бесконечного спуска.

Объяснение:

0,0(0 оценок)
Ответ:
Polinka0898
Polinka0898
05.04.2020 18:59
Пусть первой трубе для заполнения бассейна нужно х часов, тогда второй - (х+8) ч. За 1 час l труба заполнит 1/х бассейна, ll - 1/(х + 8). Вместе за час они заполняют 1/х + 1/(х+8) часть. Т.к полностью бассейн (100% = 1) наполнят обе трубы только за 3 часа, то составим уравнение:

(1/х + 1/(х+8) ) * 3 = 1
1/х + 1/(х+8) = 1/3 |*3
3/х + 3/(х+8) = 1
3(х+8)/(х(х+8)) + 3х/(х(х+8)) = 1
(3(х+8) + 3х)/(х(х+8) = 1
(3х + 24 + 3х)/(х^2 + 8х) = 1
6х + 24 = х^2 + 8х
6х + 24 - х^2 - 8х = 0
-х^2 - 2х + 24 = 0
-(х^2 + 2х - 24) = 0
х^2 + 2х - 24 = 0
(х + 6)(х - 4) = 0
х1 = -6 => не удовлетворяет условию
х2 = 4 => удовлетворяет

Значит, вторая труба заполнит бассейн за 4 часа, первая - за 12.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота