Тема урока: Формулы сокращенного умножения
1) (2a – b)(2a + b) + b^2
(3b – 6m)(3b + 6m) – 9b^2
12x^2 – (x – 5y)(x + 5y)
2) 5(x +2)(x – 2)
-3(x +6)(x – 6)
2x(x +7)(x – 7)
3) (x +7)(x – 7) – (x +5)(x – 5)
(x +5)(x – 5) – (x +3)(x – 3)
(x +y)(x – y) – (x – 3y)^2
4) 5(x – y)^2
-3(x + y)^2
-m(3s + m)^2
5) (x – y)^2 + 5(x + 4)
b(b + 4) – (b +2)^2
(a – 4)^2 + a(a + 8)
х - цифра десятков (0<x<9)
у - цифра единиц (0<y<9)
По условию сумма цифр двузначного числа равна 8, получаем первое уравнение:
х+у=8
(10х+у) - данное число
(10у+х) - число, записанное теми же цифрами, но в обратном порядке.
По условию если данное число разделить на число, записанное теми же цифрами,но в обратном порядке, то в частном получится 4 в остатке 3.
(10х+у) : (10у+х) = 4(ост. 3)
Получим второе уравнение:
10х+у = 4·(10у+х)+3
Упростим его:
10х+у=40у+4х+3
6х-39у = 3
2х-13у = 1
Решаем систему:
7 - цифра десятков
1 - цифра единиц
71 - данное число
ответ: 71
2) 2х-(3+4х)=2х-3-4х=-3-2х
3)2х-(3-4х)=2х-3+4х=6х-3
4)3m+(1+2m)=5m+1
5)3m-(1+2m)=m-1
6)3m-(1-2m)=5m-1
Раскрыть скобки:
1)2x+(1+2y)=2x+2y+1
2)a+(3-3b)=a+3-3b
3)2x-(1+2y)=2x-1-2y
4)a-(3-3b)=a-3+3b
5)b+(c-a+2d)=b+c-a+2d
Применяя законы и свойства арифметических действий, упростить выражение:
1)3a+3(1+a)=6a+3
2)2(m-1)+2m=4m-2
3)5(m+3n)+2(2m-n)=5m+15n+4m-2n=9m+13n
4)3(x+2y)+4(2x-y)=3x+6y+8x-4y=11x+2y
5)7(2x+3y)-(3x+2y)=14x+21y-3x-2y=11x+19y
6)5(6c+3d)-2(3c+6d)=30c+15d-6c-12d=24c+3d
7)2(5c+4d)-2(4c+5d)=10c+8d-8c-10d=2c-2d
Упростить и найти числовое значение выражения:
1) 4-5.1х-9=-5.1х-5, если х=10, то -51-5=-56
2)5-0.21х-28=-0.21х-23, если х=100, то -21-23=-44
3)2а+0.6а-0.75=2.6а-0.75, если а=5, то 13-0.75=12.25
3)6а+0.3а-0.6=6.3а-0.6, если а=30, то 189-0.6=188.4