Переведем все минуты в часы: 10 минут=1/6 часа 2 минуты =1/30 часа Пусть скорость поезда v км/ч, тогда время за которое должен был пройти поезд 54/v часов. Пройдя 14 км со скорость v, он затратил 14/v часов, Ему осталось пройти 54-14=40 км со скоростью (v+10) км/ч. Составим и решим уравнение: 54/v+1/30=14/v+40/(v+10)+1/6 (54-14)/v+40/(v+10)=1/6-1/30 40(v+10-v)/(v(v+10))=2/15 400*15/2=v(v+10) v²+10v-3000=0 D=10²+4*3000=12100=110² v₁=(-10+110)/2=50 км/ч v₂=(-10-110)/2=-60 <0
ответ 50 км/ч
Пусть скорость реки x км/ч, тогда скорость по течению (x+3) км/ч, а против (х-3) км/ч. Составим и решим уравнение. 4/(x-3)+25/(x+3)=1 4x+12+25x-75=x²-9 х²-29х+54=0 D=29²-4*54=625=25² х₁=(29-25)/2=2 км/ч < cкорости течения х₂=(29+25)/2=27 км/ч скорость парохода ответ 27 км/ч
А)y`=dy/dx (1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными ydy=eˣdx/(1+eˣ) ∫ydy=∫eˣdx/(1+eˣ) y²/2=ln|eˣ+1| + c - общее решение Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить. y²/2=lnС(eˣ+1) - общее решение при у=1 х=0 1/2=ln2C 2C=√e C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение можно умножить на 2 y²=2ln((eˣ+1)· (√e)/2) или y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx tgxdy=y㏑ydx - уравнение с разделяющимися переменными dy/ylny=dx/tgx; ∫dy/ylny=∫dx/tgx; ∫d(lny)/lny=∫d(sinx)/sinx; ln|lny)=ln|sinx|+lnC; ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4 ln|lne|=ln|Csin(π/4)| ln|1|=ln|C√2/2| 1=C√2/2 C=√2 ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
10 минут=1/6 часа
2 минуты =1/30 часа
Пусть скорость поезда v км/ч, тогда время за которое должен был пройти поезд 54/v часов. Пройдя 14 км со скорость v, он затратил 14/v часов, Ему осталось пройти 54-14=40 км со скоростью (v+10) км/ч. Составим и решим уравнение:
54/v+1/30=14/v+40/(v+10)+1/6
(54-14)/v+40/(v+10)=1/6-1/30
40(v+10-v)/(v(v+10))=2/15
400*15/2=v(v+10)
v²+10v-3000=0
D=10²+4*3000=12100=110²
v₁=(-10+110)/2=50 км/ч
v₂=(-10-110)/2=-60 <0
ответ 50 км/ч
Пусть скорость реки x км/ч, тогда скорость по течению (x+3) км/ч, а против (х-3) км/ч. Составим и решим уравнение.
4/(x-3)+25/(x+3)=1
4x+12+25x-75=x²-9
х²-29х+54=0
D=29²-4*54=625=25²
х₁=(29-25)/2=2 км/ч < cкорости течения
х₂=(29+25)/2=27 км/ч скорость парохода
ответ 27 км/ч
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1) - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2)
или
y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.