Температура воздуха в городе N представлена статистическим рядом: -2°C, -2°С,—1°С, О°С, -3°C, -2° С,-2°C,-5°C,-6°C,-3°C,-3°C,-2°C,-3°C,-5°C,-4°C,-6°C.Составьте вариационный ряд и найдите относительную частоту варианты (-2°C) (в %)
Графики заданных функций - это прямые линии. Для построения прямой достаточно определить координаты двух точек: у = 2х - 3 Задаём любую координату: например, х = 0 у = 2*0 - 3 = -3. Получили координаты первой точки. Задаём другое значение х = 3 у = 2*3 - 3 = 6 - 3 = 3.
То же самое нужно выполнить для второй прямой: у = -5х + 11 х = 0 у = -5*0 + 11 = 11 х = 4 у = -5*4 + 11 = -20 + 11 = -9.
После построения прямых находится точка их пересечения. Координаты этой точки можно проверить аналитически. Для этого надо решить систему линейных уравнений: у = 2х - 3 у = 2х - 3 у = -5х + 11 -у = 5х - 11 0 =7х - 14 7х = 14 х= 14/7 = 2 у = 2*2 - 3 = 1.
Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
Для построения прямой достаточно определить координаты двух точек:
у = 2х - 3
Задаём любую координату: например, х = 0 у = 2*0 - 3 = -3.
Получили координаты первой точки.
Задаём другое значение х = 3 у = 2*3 - 3 = 6 - 3 = 3.
То же самое нужно выполнить для второй прямой:
у = -5х + 11
х = 0 у = -5*0 + 11 = 11
х = 4 у = -5*4 + 11 = -20 + 11 = -9.
После построения прямых находится точка их пересечения.
Координаты этой точки можно проверить аналитически.
Для этого надо решить систему линейных уравнений:
у = 2х - 3 у = 2х - 3
у = -5х + 11 -у = 5х - 11
0 =7х - 14 7х = 14 х= 14/7 = 2 у = 2*2 - 3 = 1.
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше