Теннисист ударил по мячу, который взлетел вверх. Его высоту в метрах над поверхностью земли через t секунд описывает
функция һ(t) = 40t—5t².
1. На какую наибольшую высоту от поверхности земли взлетит
мяч?
2. Через сколько секунд мяч упадёт на землю?
Можете написать с решением .
3(8x-4x²+2x²-x³) < 0
24x-12x²+6x²-3x³ < 0 | :(-3)
-8x+4x²-2x²+x³ < 0
x³+2x²-8x < 0
x(x²+2x-8) < 0
Найдем нули функции:
y = 0
y = x(x²+2x-8)
⇒ x = 0 или x²+2x-8 = 0
D = 4+32 = 36
x₁ = = -4
x₂ = = = 1,5
_______ ______ ______ ___________
-- \ / + \ / -- \ / +
----------- °----------- °------------°-------------------->
//////////// -4 0 /////////// 1,5 х
ответ: х ∈ (-∞ ; -4) U (0 ; 1,5)
-(2(cosπ/3 +isinπ/3))³/√(2(cosπ/4 -isinπ/4))²⁶ =
-2³(cos3*π/3 + isin3*π/3) /2¹³(cos26*π/4 -isin26*π/4) =
-8(cosπ + isinπ) /2¹³(cos13π/2 -isin13π/2) = -8(-1+0)/2¹³(0 -i) =-2³/2¹³i = (1/21⁰)i.
* * * * * *
z =a+ib ; z =r(cosα + i sinα ) ; r =√(a²+b²) ; α =arctq(b/a)
(r(cosα+isinα) ) ^n =r^k(cosnα +i sinnα) ;
(r₁(cosα₁+isinα₁)*r₂(cosα₂+isinα₂) =(r₁*r₂) (cos(α₁+α₂) +isin(α₁+α₂)) ;
(r₁(cosα₁+isinα₁)/r₂(cosα₂+isinα₂) =(r₁/r₂) (cos(α₁-α₂) +isin(α₁-α₂)) ;
z₁ =(1+i√3) ,
модуль этого числа: r₁ =√(1² +(√3)²) =√(1 +3)=2;
аргумент этого числа : tqα =b/a =√3/1=√3 ⇒α=60° или α= π/3 радиан.
z₁ =(1+i√3) =2(cosπ/3 +isinπ/3) .