Теорема Виэта 1. x^2-3х+2=0
2. х^2-4х+3=0
3. х^2 -5х +4=0
4. х^2 -6х+5=0
5. х^2-7х-6=0
6. х^2-5х+6=0
7. х^2-8х+7=0
8. х^2-9х+8=0
9. х^2-6х+8=0
10. х^2-11х+10=0
11. х^2+3х+2=0
12. х^2+4х+3=0
13. х^2+5х+4=0
14. х^2+6х+5=0
15. х^2+10х+9=0
16. х^2+16х+15=0
17.х^2+ 8х+15=0
18. х^2+17х+16=0
19. х^2+ 10х+16=0
20. х^2+19х+18=0 .
Нужно только полностью решение !!
Для того чтобы решить эту задачу, нужно определить, за какое время девочки вымоют окна, работая вместе:
1) Обозначим производительность труда Маши за х, Лены – за у, а Насти – за с, а всю работу возьмем за 1.
2) Тогда время на выполнение всей работы Маши и Насти: х + с = 1/20.
3) Производительность труда Насти и Лены: у + с = 1/15.
4) Производительность труда Лены и Маши: х + у = 1/12.
5) Теперь сложим данные уравнения и найдем общую производительность труда: 2х + 2у + 2с = 1/5; 2 * (х + у + с) = 1/5; х + у + с = 1/10.
6) Тогда вместе девочки выполнят всю роботу за 10 минут.
Поэтому наш ответ: 10 минут.
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.