Так как члены представляют собой арифметическую прогрессию, то a2=a1+d, a5=a1+4d, где d - знаменатель арифметической прогрессии. Но так как эти же члены являются членами геометрической прогрессии, то a2=a1*q и a5=a1*q², где q - знаменатель геометрической прогрессии. По условию, a2+1=a1+1+d1, a5-3=a1+1+2d1, или a2=a1+d1, a5=a1+4+2d1. Из первого уравнения находим d1=d. Так как a5=a1+4d, то из второго уравнения следует уравнение 4d=4+2d, откуда d=2. Теперь, заменяя a2 на a1+2 и a5 на a1+8, получаем уравнения a1+2=a1*q, a1+8=a1*q². Из первого уравнения следует a1=2/(q-1). Подставляя это выражение во второе уравнение, приходим к квадратному уравнению q²-4q+3=0. Дискриминант D=(-4)²-4*1*3=4=2². Отсюда q=(4+2)/2=3 либо q=(4-2)/2=1. Но если q=1, то все члены геометрической прогрессии, а с ней и все члены исходной арифметической прогрессии, были бы равны, что было бы возможно лишь при d=0. Но так как d=2≠0, то q≠1. Значит, q=3. Тогда a1=2/(3-1)=1, и искомая сумма S100=100*(a1+a100)/2=50*(a1+a100). Но a100=a1+99d=1+99*2=199, и тогда S100=50*(1+199)=10 000. ответ: 10 000.
4x - 28 = x + 17
3x = 45
x = 15
c - 32 = - 7 * ( c + 8 )
c - 32 = - 7c - 56
8c = - 24
c = - 3
3 * ( 4x - 8 ) = 3x - 6
12x - 24 = 3x - 6
9x = 18
x = 2
5 * ( x - 7 ) = 3 * ( x - 4 )
5x - 35 = 3x - 12
2x = 23
x = 11,5
4 * ( x - 3 ) - 16 = 5 * ( x - 5 )
4x - 12 - 16 = 5x - 25
4x - 28 = 5x - 25
x = - 3
8 * ( 2a - 6 ) = 2 * ( 4a + 3 )
16a - 48 = 8a + 6
8a = 54
a = 6,75
- 4 * ( 3 - 5x ) = 18x - 7
- 12 + 20x = 18x - 7
2x = 5
x = 2,5
6a + ( 3a - 2 ) = 14
6a + 3a - 2 = 14
9a = 16
a = 1 ( 7/9 )
8x - ( 7x - 142 ) = 51
8x - 7x + 142 = 51
x = - 91