Решение Графиком функции является парабола, ветви которой направлены вверх. 1) D (f) =R , т.к. f – многочлен. 2) f(-х) = (-х)2 - 4(-х) - 5 = х2 + 4х – 5 Функция поменяла знак частично, значит, f не является ни чётной, ни нечётной. 3) Нули функции: При х = 0 у = - 5; (0;-5) при у = 0 х2 - 4х – 5 = 0 По теореме, обратной теореме Виета х1 = -1; х2 = 5 (-1;0); (5;0). 4) Найдём производную функции f: f ′(х) = 2х – 4 Найдём критические точки: f ′(х) = 0; 2х – 4 = 0; х = 2 – критическая точка f ′(х) - + f (х) 2 х min 5) Найдём промежутки монотонности: Если функция возрастает, то f ′(х) > 0 ; 2х – 4 > 0; х > 2. Значит, на промежутке (2; ∞) функция возрастает. Если функция убывает, то f ′(х) < 0; 2х – 4 < 0; х < 2. Значит, на промежутке (- ∞; 2) функция убывает. 6) Найдём координаты вершины параболы: Х =Y = 22 - 4*2 – 5 = -9 (2;-9) – координаты вершины параболы. 7) Область изменения функции Е (у) = (-9; ∞) 8) Построим график функции: у -1 2 5 -5 х
Путь первый работник может выполнить задание за Х дней. Второй за У дней.
На 1/3 задания ему требуется Х/3 дней. Второму на 2/3 задания 2У/3
Х/3=(2У/3)-3
1/(1/Х+1/У)=2 1=2/Х+2/У ХУ=2Х+2У
—————————
Х=2У-9
ХУ=2Х+2У
———————————
У=(Х+9)/2
Х*Х+9Х=4Х+4У
Х*Х+9Х=4Х+2Х+18
Х*Х+3Х=18
(Х+1,5)*(Х+1,5)=20,25=4,5*4,5
Положительное решение Х=3
ответ: За 3 дня.
Проверка: Второй за 6 дней.
1/3 первый выполнит за день, второй 2/3 за 4 дня.
Первый за день делает 1/3 второй 1/6 . Вместе 1/2 часть задания. Значит вместе все сделают за 2 дня. ответ верный.
Объяснение:
Графиком функции является парабола, ветви которой направлены вверх. 1) D (f) =R , т.к. f – многочлен. 2) f(-х) = (-х)2 - 4(-х) - 5 = х2 + 4х – 5 Функция поменяла знак частично, значит, f не является ни чётной, ни нечётной. 3) Нули функции: При х = 0 у = - 5; (0;-5) при у = 0 х2 - 4х – 5 = 0 По теореме, обратной теореме Виета х1 = -1; х2 = 5 (-1;0); (5;0). 4) Найдём производную функции f: f ′(х) = 2х – 4 Найдём критические точки: f ′(х) = 0; 2х – 4 = 0; х = 2 – критическая точка
f ′(х) - + f (х) 2 х
min 5) Найдём промежутки монотонности: Если функция возрастает, то f ′(х) > 0 ; 2х – 4 > 0; х > 2. Значит, на промежутке (2; ∞) функция возрастает. Если функция убывает, то f ′(х) < 0; 2х – 4 < 0; х < 2. Значит, на промежутке (- ∞; 2) функция убывает. 6) Найдём координаты вершины параболы: Х =Y = 22 - 4*2 – 5 = -9 (2;-9) – координаты вершины параболы.
7) Область изменения функции Е (у) = (-9; ∞) 8) Построим график функции:
у
-1 2 5 -5 х