Не за что))) рассмотрим несколько случаев.Не факт ещё, что данное уравнение явлдяется квадратным, поскольку параметр содержится как раз при квадрате.1)a = 0 Тогда уравнение не является квадратным, получаем уравнение вида -5x -5 = 0Но линейное уравнение имеет лишь один корень. Значит, данное значение параметра нам не подходит.2)Рассмотрю случай, когда a ≠ 0. Тогда уравнение является квадратным. ax² - (a² + 5)x + 3a-5 = 0 Теперь вспомним, а когда квадратное уравнение имеет 2 различных корня? Тогда, когда его дискриминант больше 0. Так что, первым делом выделим дискриминант этого уравнения.a = a ; b = -(a²+5);c = 3a - 5; D = b² - 4ac = (-(a²+5))² - 4a(3a - 5) = a^4 + 10a² + 25 - 12a² + 20a = a^4 - 2a² + 20a + 25D > 0, как мы уже сказали. теперь решим неравенство.a^4 - 2a² + 20a + 25 > 0
2) верно
3) неверно.
Пример: 0,2*0,5=1 (0,2 и 0,5 - нецелые числа, но их произведение - целое число)
4) неверно.
Пример:
Возьмём дробь 5/7.
Если к числителю и знаменателю одновременно прибавить 2, получим дробь 7/9. Приведём дроби к одному знаменателю: 5*9/7*9=45/63
7*7/9*7=49/63
45<49
45\63< 49\63
5|7 < 7|9 => 5/7≠7/9