Докажем тождество:
(tga – sina) * (cos^2 a/sina+ctga) = sin^2 a;
Раскроем скобки в левой части тождества и тогда получим:
tga * cos^2 a/sina + tga * ctg a – sin a * cos^2 a/sina – sina * ctga = sin^2 a;
Используя основные тождества тригонометрии, упростим правую часть выражения.
Получаем:
sina/cosa * cos^2 a/sina + 1 – sina * cos^2 a/sina – sina * cosa/sina = sin^2 a;
Сократи дроби и останется:
1/1 * cosa/1 + 1 – 1 * cos^2 a/1 – 1 * cosa/1 = sin^2 a;
cos a + 1 – cos^2 a – cos a = sin^2 a;
1 – cos^2 a = sin^2 a;
sin^2 a = sin^2 a;
Тождество верно.
Докажем тождество:
(tga – sina) * (cos^2 a/sina+ctga) = sin^2 a;
Раскроем скобки в левой части тождества и тогда получим:
tga * cos^2 a/sina + tga * ctg a – sin a * cos^2 a/sina – sina * ctga = sin^2 a;
Используя основные тождества тригонометрии, упростим правую часть выражения.
Получаем:
sina/cosa * cos^2 a/sina + 1 – sina * cos^2 a/sina – sina * cosa/sina = sin^2 a;
Сократи дроби и останется:
1/1 * cosa/1 + 1 – 1 * cos^2 a/1 – 1 * cosa/1 = sin^2 a;
cos a + 1 – cos^2 a – cos a = sin^2 a;
1 – cos^2 a = sin^2 a;
sin^2 a = sin^2 a;
Тождество верно.