"существует х и существует у, такие что выполняется условие х+у=2"
Истина. Действительно, такие числа существуют, например (1; 1), (2.5; -0.5) и т.д.
∀x ∀y x+y=2
"для любого х и для любого у выполняется условие х+у=2"
Ложь. Очевидно, не любые два числа в сумме дают 2. Например, это условие не выполняется для чисел (0; 1), (2; -0.5) и т.д.
∃x ∀y x+y=2
"существует х, такой что для любого у выполняется условие х+у=2"
Ложь. Предположим, что существует такой х, равный х₀. Тогда, выразив из формулы у, получим: у=2-х₀. Но так как х₀ - некоторая найденная константа, то и выражение (2-х₀) представляет собой константу. Но левая часть соответствует у, который может быть любым. Константа не может равняться одновременно любому выражению. Значит, такого х существовать не может. Например, если х=3, то равенство выполняется только при условии у=2-3=-1, пара (3; -1), ни при каком другом у с тем же х условие не выполняется.
∀x ∃y x+y=2
"для любого х, существует у, такой что выполняется условие х+у=2"
Истина. Выбирая "любой" х мы всегда можем вычислить соответствующее значение у по формуле у=2-х. Например, если х=π, то у=2-π, пара (π; 2-π), если х=0, то у=2-0=2, пара (0; 2), и т.д.
Биквадратное уравнение.
Решается заменой переменной:
Если D >0, т.е.
уравнение имеет корни:
или
Обратный переход:
или
Уравнение x^2=с имеет корни, если c> 0, тогда корни противоположны по знаку
Чтобы корни данного уравнения были равны,
с=0
Это иррациональное уравнение.
При (3a+1) >0 оно не имеет корней.
При (3а+1) ≤0
возводим обе части уравнения в квадрат:
0=1 - неверно, нет таких значений а
Аналогично
При (3a+1) < 0 оно не имеет корней.
При (3а+1) ≥0
возводим обе части уравнения в квадрат:
0=1 - неверно, нет таких значений а
Если , т.е
или
При
уравнение принимает вид:
⇒
уравнение не имеет корней
При
уравнение принимает вид:
⇒
Уравнение 4-ой степени, значит
и
О т в е т. При
∃ - квантор существования, читается "существует"
∀ - квантор всеобщности, читается "для любого"
Рассмотрим высказывания:
∃x ∃y x+y=2
"существует х и существует у, такие что выполняется условие х+у=2"
Истина. Действительно, такие числа существуют, например (1; 1), (2.5; -0.5) и т.д.
∀x ∀y x+y=2
"для любого х и для любого у выполняется условие х+у=2"
Ложь. Очевидно, не любые два числа в сумме дают 2. Например, это условие не выполняется для чисел (0; 1), (2; -0.5) и т.д.
∃x ∀y x+y=2
"существует х, такой что для любого у выполняется условие х+у=2"
Ложь. Предположим, что существует такой х, равный х₀. Тогда, выразив из формулы у, получим: у=2-х₀. Но так как х₀ - некоторая найденная константа, то и выражение (2-х₀) представляет собой константу. Но левая часть соответствует у, который может быть любым. Константа не может равняться одновременно любому выражению. Значит, такого х существовать не может. Например, если х=3, то равенство выполняется только при условии у=2-3=-1, пара (3; -1), ни при каком другом у с тем же х условие не выполняется.
∀x ∃y x+y=2
"для любого х, существует у, такой что выполняется условие х+у=2"
Истина. Выбирая "любой" х мы всегда можем вычислить соответствующее значение у по формуле у=2-х. Например, если х=π, то у=2-π, пара (π; 2-π), если х=0, то у=2-0=2, пара (0; 2), и т.д.
ответ: истинные высказывания 1, 4; ложные высказывания 2, 3