Найдём уравнение прямой, проходящей через точки (-3; 0) и (-1; 3).
(х + 3)/(-1 + 3) = (у -0)/(3 - 0)
3(х + 3) = 2у
у = 1,5х + 4,5
Найдём точки пересечения этой прямой с осью Ох
у = 0;
1,5х + 4,5 = 0
х = -3
парабола у = 3х касается оси Ох в точке х = 0.
Найдём точки пересечения параболы у = 3х² и прямой у = 1,5х + 4,5
3х² = 1,5х + 4,5
3х² - 1,5х - 4,5 = 0
2х² - х - 3 = 0
D = 1 + 24 = 25
x1 = (1 - 5)/4 = -1
x2 = (1 + 5)/4 = 1.5
Изобразим графики, заданные уравнениями параболы и прямой.
Смотри рисунок на прикреплённом файле.
Очевидно, что фигура, заключённая между параболой, наклонной прямой и осью Ох, представляет собой криволинейный треугольник. Причем левая половина этого треугольника ограничена наклонной прямой и осью Ох, а правая половина - параболой и осью Ох. Соответственно, и интегралов будет два
S = 4
Объяснение:
Найдём уравнение прямой, проходящей через точки (-3; 0) и (-1; 3).
(х + 3)/(-1 + 3) = (у -0)/(3 - 0)
3(х + 3) = 2у
у = 1,5х + 4,5
Найдём точки пересечения этой прямой с осью Ох
у = 0;
1,5х + 4,5 = 0
х = -3
парабола у = 3х касается оси Ох в точке х = 0.
Найдём точки пересечения параболы у = 3х² и прямой у = 1,5х + 4,5
3х² = 1,5х + 4,5
3х² - 1,5х - 4,5 = 0
2х² - х - 3 = 0
D = 1 + 24 = 25
x1 = (1 - 5)/4 = -1
x2 = (1 + 5)/4 = 1.5
Изобразим графики, заданные уравнениями параболы и прямой.
Смотри рисунок на прикреплённом файле.
Очевидно, что фигура, заключённая между параболой, наклонной прямой и осью Ох, представляет собой криволинейный треугольник. Причем левая половина этого треугольника ограничена наклонной прямой и осью Ох, а правая половина - параболой и осью Ох. Соответственно, и интегралов будет два
Площадь находим через интегральчики:
1. Находим площадь фигуры, ограниченной сверху параболой
2. Находим площадь фигуры, ограниченной сверху прямой
3. Вычитаем из S1 - S2
1) икс для первой фигуры изменяется от -2 до 1, фигуру сверху ограничивает парабола у=4-х^2
Находим площадь S1= int (-2 ; 1) (4-х^2) dx = (4x - x^3 \3) | (-2;1) =4-1\3 - (-8 -( -8/3) = 27/3 = 9 (cм^2)
2) икс для второй фигуры изменяется от -2 до 1
Находим площадь S2= int(-2 ; 1) (2+x) dx = (2x + x^2 \2) | (-2;1) = 2 + 1\2 - (-4+2) = 4,5
P.S Можно найти просто через формулу площади треугольника S=1\2 a*b= 1\2 * 3* 3 = 4,5 (см^2)
3) S=S1 - S2 = 9 - 4,5 = 4,5 см^2