Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
POMIPO
10.08.2020 14:07 •
Алгебра
Точка а1 фигуры а1б1с1д1е1 получена при параллельного переноса на вектор k точки а фигуры абсде . на какой вектор будут перенесены остальные вершины фигуры?
Показать ответ
Ответ:
DestapTM
12.04.2020 07:01
Пусть Мастер делает х дет/час, а ученик: (х-10) дет/час. Количество часов работы Мастера: у часов, заказ состоит из (ху) деталей; 3 ученика работают над заказом (у-2) часа, заказ состоит из 3*(х-10)*(у-2) деталей.
Т.к. заказы у Мастера и учеников одинаковые, то получаем уравнение:
xy = 3*(x - 10)(y - 2)
xy = (3x - 30)(y - 2)
xy = 3xy - 6x - 30y + 60
2xy - 30y - 6x + 60 = 0
(2xy - 30y) - (6x - 90) - 30 = 0
2y(x - 15) - 6(x - 15) = 30
y(x - 15) - 3(x - 15) = 15
(x - 15)(y - 3) = 15
По условию x>18, x∈Z, y∈Z
15 = 3*5 = 5*3 = 15*1 = 1*15 - возможные варианты разложения 15 на целые множители.
Если x - 15 = 3, x = 18 - не подходит по условию (x>18), значит x - 15 > 3
Если x - 15 = 5, x = 20 > 18; y - 3 = 3, y = 6
x=20, y=6 - решение. 20*6 = 120 деталей заказ
Если x - 15 = 15, x=30; y - 3 = 1, y=4
x=30, y=4 - решение. 30*4 = 120 деталей заказ
ответ: 120 деталей
0,0
(0 оценок)
Ответ:
Юліан11
21.03.2020 01:51
1) log(1/3)(2 - 3x) ≥ log(1/3)(3)
Т.к. основания логарифмов меньше 1 (0<1/3<1), то подлогарифмические выражения сравниваются обратным знаком:
2 - 3x ≤ 3
-3x ≤ 3 - 2
-3x ≤ 1
x ≥ -1/3
ОДЗ: 2 - 3x >0, x<2/3
ответ: x∈[-1/3;2/3)
2) ОДЗ: x - 1> 0, 2x - 4>0; x>1, x>2. Общее решение: x>2
log2(x-1)^2 - log2(2x - 4) > log2(2)
log2( (x-1)^2 / (2x - 4)) > log2(2)
2>1, значит подлогарифмические выражения сравниваются тем же знаком:
(x-1)^2 / (2x - 4) > 2
(x^2 - 2x + 1 - 4x + 8)/(2x - 4) >0
(x^2 - 6x + 9)/(2x - 4) > 0
Числитель всегда больше нуля: x^2 - 6x + 9 = (x-3)^2
Значит нужно, чтобы знаменатель был положительным:
2x - 4 >0, x>2
ответ: x∈(2; +бесконечность)
0,0
(0 оценок)
Популярные вопросы: Алгебра
sviridov971
07.03.2022 18:56
Укажите уравнение оси симметрии пораболы y=2x2(в квадрате)-5x+1...
Artem58268343
07.03.2022 18:56
Вынесите множитель из под знака корня 1)√98 2)√160 3)√675 4)2√18 5)7√75 6)0,2√300...
David13211
01.01.2022 20:44
Решите неравенство х+3 дробная черта х-5 0...
lsofa1204
01.01.2022 20:44
Вычислите значение выражения: 6m + 5n при m = - 5/6 (минус пять шестых) при надо : с...
гоша206
02.02.2020 02:25
как решить , найти значение предела...
kostenkoulana7
20.04.2022 11:30
Знайди перший член геометричної прогресії (х), якщо x = 16, q= 2. геометрній прогресії (ь h - 18- 169ооЗнали на...
tanya150452
09.11.2021 00:19
В следующей последовательности записаны результаты наблюдений атмосферного давления (в мм. рт. ст.) в Астане в тече ние 15 дней: 720, 722, 123, 124, 123, 120, 121,...
alenalis41125
19.11.2020 21:21
Решите для 7 класса х в квадрате+8х+15=0...
nastyaparshincg
19.11.2020 21:21
Завод закупает подарки для своих работников. подарок стоит 120 руб. при покупке более 35 подарков фирма делает скидку на 5% на каждый подарок. сколько подарков купил...
saltikov
19.11.2020 21:21
Втреугольнике авс уголс равен 90 градусов,ав=40,ас=4подкорнем51.найдите sinа....
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
Т.к. заказы у Мастера и учеников одинаковые, то получаем уравнение:
xy = 3*(x - 10)(y - 2)
xy = (3x - 30)(y - 2)
xy = 3xy - 6x - 30y + 60
2xy - 30y - 6x + 60 = 0
(2xy - 30y) - (6x - 90) - 30 = 0
2y(x - 15) - 6(x - 15) = 30
y(x - 15) - 3(x - 15) = 15
(x - 15)(y - 3) = 15
По условию x>18, x∈Z, y∈Z
15 = 3*5 = 5*3 = 15*1 = 1*15 - возможные варианты разложения 15 на целые множители.
Если x - 15 = 3, x = 18 - не подходит по условию (x>18), значит x - 15 > 3
Если x - 15 = 5, x = 20 > 18; y - 3 = 3, y = 6
x=20, y=6 - решение. 20*6 = 120 деталей заказ
Если x - 15 = 15, x=30; y - 3 = 1, y=4
x=30, y=4 - решение. 30*4 = 120 деталей заказ
ответ: 120 деталей
Т.к. основания логарифмов меньше 1 (0<1/3<1), то подлогарифмические выражения сравниваются обратным знаком:
2 - 3x ≤ 3
-3x ≤ 3 - 2
-3x ≤ 1
x ≥ -1/3
ОДЗ: 2 - 3x >0, x<2/3
ответ: x∈[-1/3;2/3)
2) ОДЗ: x - 1> 0, 2x - 4>0; x>1, x>2. Общее решение: x>2
log2(x-1)^2 - log2(2x - 4) > log2(2)
log2( (x-1)^2 / (2x - 4)) > log2(2)
2>1, значит подлогарифмические выражения сравниваются тем же знаком:
(x-1)^2 / (2x - 4) > 2
(x^2 - 2x + 1 - 4x + 8)/(2x - 4) >0
(x^2 - 6x + 9)/(2x - 4) > 0
Числитель всегда больше нуля: x^2 - 6x + 9 = (x-3)^2
Значит нужно, чтобы знаменатель был положительным:
2x - 4 >0, x>2
ответ: x∈(2; +бесконечность)