Точка – это центр симметрии, так как функция нечетная, а у нечетных функций график симметричен относительно начала координат (для функции ось переносится на 2 единицывверх). это ! 10 !
Такие уравнения решаются по одному приёму: надо снять знак модуля. При этом учитывать, что |x| = x при х ≥ 0 |x| = -x при х <0 Придётся определять какое число стоит под знаком модуля, чтобы потом этот самый знак снять. каждое подмодульное выражение = 0 при х = -2, 3, 2 Поставим эти числа на координатной прямой -∞ -2 2 3 +∞ Получили 4 промежутка. на каждом отдельно будет уравнение иметь свой вид а) (-∞; -2) -(х+2) +(х-3) +(х-2) = 3 -х-2+х-3+х-2 = 3 х = 10 ( в указанный промежуток не входит) б)[-2; 2) х+2 +х -3 +х-2 = 3 3х = 6 х = 2 ( в указанный промежуток не входит) в) [2; 3) х +2 +х -3 -х -2 = 3 х =6 ( в указанный промежуток не входит) г)[3; +∞) х +2 -х+3 -х+2 = 3 -х = -4 х = 4 ( в указанный промежуток входит) ответ: 4
|x| = -x при х <0
Придётся определять какое число стоит под знаком модуля, чтобы потом этот самый знак снять.
каждое подмодульное выражение = 0 при х = -2, 3, 2
Поставим эти числа на координатной прямой
-∞ -2 2 3 +∞
Получили 4 промежутка. на каждом отдельно будет уравнение иметь свой вид
а) (-∞; -2)
-(х+2) +(х-3) +(х-2) = 3
-х-2+х-3+х-2 = 3
х = 10 ( в указанный промежуток не входит)
б)[-2; 2)
х+2 +х -3 +х-2 = 3
3х = 6
х = 2 ( в указанный промежуток не входит)
в) [2; 3)
х +2 +х -3 -х -2 = 3
х =6 ( в указанный промежуток не входит)
г)[3; +∞)
х +2 -х+3 -х+2 = 3
-х = -4
х = 4 ( в указанный промежуток входит)
ответ: 4
x(3x-4)=0
x=0 или 3x-4=0
3x=4
x=4|3
2)4x^2-9=0
(2x-3)(2x+3)=0
2x-3=0 или 2x+3=0
2x=3 2x=-3
x=3|2 x=-3|2
3)-5x^2+6x=0
x(-5x+6)=0
x=0 или -5x+6=0
-5x=-6
x=6|5
4)-x^2+3=0
x^2=3
x=+-√3