ТОЧКА P принадлежит отрезку SM , длина которого равна 10см определите длины отрезков SP и PM если: 1) длина отрезка SP на 1,2 см меньше длины отрезка PM 2) длина отрезка PM в 4 раза больше длины отрезка SP 3)SP:PM=2:3
Решение: Высота, опущенная на гипотенузу, делит прямоугольник на два прямоугольных треугольника, где два отрезка гипотенузы прямоугольного треугольника являются проекциями катетов основного прямоугольного треугольника и кроме того они являются катетами двух образовавшихся прямоугольников. Рассмотрим один из прямоугольных треугольников, где высота, опущенная на гипотенузу является катетом (72дм), катет прямоугольника (120дм) является гипотенузой получившегося прямоугольника. По теореме Пифагора найдём другой катет (c) одного из прямоугольников: c²=120²-72² c²=14400-5184 c²=9216 c=√9216=96 (дм) - это одна из проекций катета (первого образовавшегося прямоугольного треугольника) Найдём проекцию второго катета основного прямоугольника: для этого воспользуемся свойством высоты, проведённой к гипотенузе, "высота, проведённая к гипотенузе, есть средне-геометрическое между проекциями катетов гипотенузы." Обозначим проекцию второго катета за (d) Отсюда: 72=√(96*d) 72²=96d 5184=96d d=5184 : 96 d=54 (дм-проекция второго катета) Найдём гипотенузу основного прямоугольника. Она равна сумме двух проекций катетов прямоугольного треугольника: 96+54=150 (дм) Найдём второй катет основного прямоугольника по теореме Пифагора. Известен катет, равный 120дм; гипотенуза 150дм Второй катет (b) основного прямоугольника равен: b²=150²-120² b²=22500--14400 b²=8100 b=√8100=90 (дм) - длина второго катета
ответ: Второй катет равен 90дм; проекция второго катета 54дм
Высота, опущенная на гипотенузу, делит прямоугольник на два прямоугольных треугольника, где два отрезка гипотенузы прямоугольного треугольника являются проекциями катетов основного прямоугольного треугольника и кроме того они являются катетами двух образовавшихся прямоугольников.
Рассмотрим один из прямоугольных треугольников, где высота, опущенная на гипотенузу является катетом (72дм), катет прямоугольника (120дм) является гипотенузой получившегося прямоугольника.
По теореме Пифагора найдём другой катет (c) одного из прямоугольников:
c²=120²-72²
c²=14400-5184
c²=9216
c=√9216=96 (дм) - это одна из проекций катета (первого образовавшегося прямоугольного треугольника)
Найдём проекцию второго катета основного прямоугольника:
для этого воспользуемся свойством высоты, проведённой к гипотенузе,
"высота, проведённая к гипотенузе, есть средне-геометрическое между проекциями катетов гипотенузы."
Обозначим проекцию второго катета за (d)
Отсюда:
72=√(96*d)
72²=96d
5184=96d
d=5184 : 96
d=54 (дм-проекция второго катета)
Найдём гипотенузу основного прямоугольника. Она равна сумме двух проекций катетов прямоугольного треугольника:
96+54=150 (дм)
Найдём второй катет основного прямоугольника по теореме Пифагора.
Известен катет, равный 120дм; гипотенуза 150дм
Второй катет (b) основного прямоугольника равен:
b²=150²-120²
b²=22500--14400
b²=8100
b=√8100=90 (дм) - длина второго катета
ответ: Второй катет равен 90дм; проекция второго катета 54дм
1. Дана арифметическая прогрессия (an). Известно, что a1=2,5 и d=1,6.
Вычисли сумму первых шести членов арифметической прогрессии.
Запиши ответ в виде числа, при необходимости округлив его до десятых:
2.Вычисли 9-й член арифметической прогрессии, если известно, что a1 = 1,9 и d = 4,9.
a9 =
3.Вычисли сумму первых 6 членов арифметической прогрессии (an), если даны первые члены: −1;6...
S6 =
4.Дана арифметическая прогрессия: −2;−4...
Вычисли разность прогрессии и третий член прогрессии.
d=
b3=
5.Найди следующие два члена арифметической прогрессии и сумму первых четырёх членов, если a1=8 и a2=0,5.
a3=
a4=
S4
Объяснение:
здається так