1) Пусть объём первого сообщения составляет х Кб. Оно на 300 Кб меньше объёма третьего сообщения х+300 Кб. Первое сообщение в 3 раза меньше объёма второго сообщения 3х Кб. Всего 600 Кб.
Составим и решим уравнение:
х+(х+300)+3х=600
2х+3х=600-300
5х=300
х=300÷5=60 (Кб) - объём первого сообщения
х+300=60+300=360 Кб - объём третьего сообщения
3х=3*60=180 Кб объём второго сообщения
ОТВЕТ: объём первого сообщения составил 60 Кб, второго сообщения 180 Кб, третьего сообщения 360 Кб.
Число 18 можно представить в виде двух неотрицательных слагаемых несколькими .
Нетрудно догадаться, что поиск варианта суммы, при котором сумма их кубов была бы наименьшей следует начать с выражения 9 + 9, а потом проверить ближайшие к значения при увеличении первого слагаемого на 1 и уменьшении второго на 1.
9 ^ 3 = 729.
729 + 729 = 1458.
Проверяем вариант суммы 10 + 8.
10 ^ 3 + 8 ^ 3 = 1000 + 512 = 1512.
1512 > 1458.
Проверяем вариант 11 + 7.
11 ^ 3 + 7 ^ 3 = 1331 + 343 = 1674.
1674 > 1458.
Куб числа 12 составит 1728, а значит проверку можно закончить, так как куб одно из слагаемых будет больше суммы двух кубов числа 9.
Наше предположение оказалось верным и сумма кубов слагаемых в выражении 9 + 9 + 18 будет наименьшей.
Дано:
Три сообщения=600 Кб
1-ое сообщения - на 300 Кб меньше 3-го
1-ое сообщения - в 3 р. меньше 2-ого
Найти:
1-ое сообщение=? Кб
2-ое сообщение=? Кб
3 сообщение = ? Кб
РЕШЕНИЕ
1) Пусть объём первого сообщения составляет х Кб. Оно на 300 Кб меньше объёма третьего сообщения х+300 Кб. Первое сообщение в 3 раза меньше объёма второго сообщения 3х Кб. Всего 600 Кб.
Составим и решим уравнение:
х+(х+300)+3х=600
2х+3х=600-300
5х=300
х=300÷5=60 (Кб) - объём первого сообщения
х+300=60+300=360 Кб - объём третьего сообщения
3х=3*60=180 Кб объём второго сообщения
ОТВЕТ: объём первого сообщения составил 60 Кб, второго сообщения 180 Кб, третьего сообщения 360 Кб.
Проверим: 60+180+360=240+360=600 Кб
Объяснение:
ответ: 9 + 9 = 18.
Число 18 можно представить в виде двух неотрицательных слагаемых несколькими .
Нетрудно догадаться, что поиск варианта суммы, при котором сумма их кубов была бы наименьшей следует начать с выражения 9 + 9, а потом проверить ближайшие к значения при увеличении первого слагаемого на 1 и уменьшении второго на 1.
9 ^ 3 = 729.
729 + 729 = 1458.
Проверяем вариант суммы 10 + 8.
10 ^ 3 + 8 ^ 3 = 1000 + 512 = 1512.
1512 > 1458.
Проверяем вариант 11 + 7.
11 ^ 3 + 7 ^ 3 = 1331 + 343 = 1674.
1674 > 1458.
Куб числа 12 составит 1728, а значит проверку можно закончить, так как куб одно из слагаемых будет больше суммы двух кубов числа 9.
Наше предположение оказалось верным и сумма кубов слагаемых в выражении 9 + 9 + 18 будет наименьшей.
Объяснение: