Область определения функции - откуда до куда твой график существует по оси Х.
а) y=1+x3 график прямой х∈(-∞;+∞)
б) y= график гиберболы х∈(-∞;0)∪(0;+∞)
Если функция имеет вид: то х∈(-∞;-7)∪(-7;+∞) Знаменатель х+7 говорит о том, что асимптота сдвинута по оси х влево. Можно записывать ответ по разному, два варианта записи ответа, необходимо выбрать 1:
y=1+x3, (1вариант) х∈(-∞;+∞) или (2 вариант) D=(-∞;+∞)
y=, (1вариант) х∈(-∞;0)∪(0;+∞) или (2 вариант) D=(-∞;0)∪(0;+∞)
, (1вариант) х∈(-∞;-7)∪(-7;+∞) или (2 вариант) D=(-∞;-7)∪(-7;+∞)
1) pi/2 < a < pi, поэтому sin a > 0, cos a < 0 cos a = -√6/4; cos^2 a = 6/16 sin^2 a = 1 - cos^2 a = 1 - 6/16 = 10/16; sin a = √10/4 tg a = sin a / cos a = (√10/4) : (-√6/4) = -√10/√6 = -√5/√3 = -√15/3
2) 0 < a < pi/2, поэтому sin a > 0, cos a > 0 sin a = √2/3; sin^2 a = 2/9 cos^2 a = 1 - sin^2 a = 1 - 2/9 = 7/9; cos a = √7/3 tg a = sin a / cos a = (√2/3) : (√7/3) = √2/√7 = √14/7
3) 3pi/2 < a < 2pi, поэтому sin a < 0, cos a > 0 cos a = 15/17; cos^2 a = 225/289 sin^2 a = 1 - cos^2 a = 1 - 225/289 = 64/289; sin a = -8/17 tg a = sin a / cos a = (-8/17) : (15/17) = -8/15
y=1+x3, х∈(-∞;+∞) или D=(-∞;+∞)
y=, х∈(-∞;0)∪(0;+∞) или D=(-∞;0)∪(0;+∞)
, х∈(-∞;-7)∪(-7;+∞) или D=(-∞;-7)∪(-7;+∞)
Объяснение:
Область определения функции - откуда до куда твой график существует по оси Х.
а) y=1+x3 график прямой х∈(-∞;+∞)
б) y= график гиберболы х∈(-∞;0)∪(0;+∞)
Если функция имеет вид: то х∈(-∞;-7)∪(-7;+∞)
Знаменатель х+7 говорит о том, что асимптота сдвинута по оси х влево.
Можно записывать ответ по разному, два варианта записи ответа, необходимо выбрать 1:
y=1+x3, (1вариант) х∈(-∞;+∞) или (2 вариант) D=(-∞;+∞)
y=, (1вариант) х∈(-∞;0)∪(0;+∞) или (2 вариант) D=(-∞;0)∪(0;+∞)
, (1вариант) х∈(-∞;-7)∪(-7;+∞) или (2 вариант) D=(-∞;-7)∪(-7;+∞)
cos a = -√6/4; cos^2 a = 6/16
sin^2 a = 1 - cos^2 a = 1 - 6/16 = 10/16; sin a = √10/4
tg a = sin a / cos a = (√10/4) : (-√6/4) = -√10/√6 = -√5/√3 = -√15/3
2) 0 < a < pi/2, поэтому sin a > 0, cos a > 0
sin a = √2/3; sin^2 a = 2/9
cos^2 a = 1 - sin^2 a = 1 - 2/9 = 7/9; cos a = √7/3
tg a = sin a / cos a = (√2/3) : (√7/3) = √2/√7 = √14/7
3) 3pi/2 < a < 2pi, поэтому sin a < 0, cos a > 0
cos a = 15/17; cos^2 a = 225/289
sin^2 a = 1 - cos^2 a = 1 - 225/289 = 64/289; sin a = -8/17
tg a = sin a / cos a = (-8/17) : (15/17) = -8/15