1. Прямоугольник - это параллелограмм, у которого все углы прямые.
2. Диагонали прямоугольника равны. Пусть ABCD - прямоугольник. В нем проведены диагонали AC и BD. Рассмотрим ΔBAD и ΔCDA. В них: 1. ∠BAD = ∠CDA = 90 2. AB = CD (как противолежащие стороны параллелограмма) 3. AD - общий катет Получаем, что ΔBAD = ΔCDA по 2 сторонам и углу между ними. Отсюда следует, что гипотенузы этих треугольников тоже равны. А т.к. гипотенузы и есть диагонали прямоугольника, то получили AC = BD. Что и требовалось доказать
Замечаем что все показатели степени нечетные числа, а значит если х отрицательное, то и его степень число отрицательное
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных) Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит Если 0<x<1то для каждой степени а значит л.ч. < --(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1 иначе для суммы первых натуральных чисел справедлива формула )
При x=1 Получаем равенство 1+2+...+20=210 x=1 - решение
и При x>1 получаем что л.ч. больше правой так как и л.ч. > ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.
2. Диагонали прямоугольника равны.
Пусть ABCD - прямоугольник. В нем проведены диагонали AC и BD.
Рассмотрим ΔBAD и ΔCDA. В них:
1. ∠BAD = ∠CDA = 90
2. AB = CD (как противолежащие стороны параллелограмма)
3. AD - общий катет
Получаем, что ΔBAD = ΔCDA по 2 сторонам и углу между ними. Отсюда следует, что гипотенузы этих треугольников тоже равны. А т.к. гипотенузы и есть диагонали прямоугольника, то получили AC = BD. Что и требовалось доказать
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных)
Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит
Если 0<x<1то
для каждой степени
а значит л.ч. <
--(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1
иначе для суммы первых натуральных чисел справедлива формула
)
При x=1
Получаем равенство 1+2+...+20=210
x=1 - решение
и При x>1 получаем что л.ч. больше правой так как
и л.ч. >
ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.