Только решение! 4. Представьте в виде произведения: 3у2-6ух+3х2. 5. Разложите на множители: в2(а-7)-2в(а-7)+а-7. 6. Разложите на множители: а3+8в3-а2+2ав-4в2.
2) 3sin²x + 1 - 3cos² x = 3sin²x - 3cos² x + 1 = -3(cos² x - sin²x) + 1 = -3cos2x+ 1
3) -7/2 cos 2x - cos x + 3,5cos² x = -3,5 cos 2x + 3,5cos² x - cos x = -3,5 (cos 2x - cos² x) - cos x = -3,5 (2cos²x - 1 - cos² x) - cos x = -3,5 (cos²x - 1) - cos x = 3,5 (1 - cos²x) - cos x = 3,5 sin²x - cos x
На первом рисунке деталь, образованная высверливанием с каждого угла квадрата по четверти круга. То есть из площади квадрата удалено 4 раза по 1/4 площади круга радиуса а.
Площадь полученной фигуры равна разности площади квадрата со стороной 2а и 4/4 площади круга с радиусом а.
S=(2a)^2-πa^2=4a^2-πa^2=(4a-π)a^2
На втором рисунке прямоугольная деталь 2a x 4a, скругленный с короткой стороны с радиусом скругления a. В детали просверлены два отверстия диаметром a.
Площадь фигуры без учета высверленных отверстий равна сумме площади квадрата 2a x 2a и площадей двух полукругов с радиусом a.
На третьем рисунке изображен правильный треугольник, середина основания которого, является центром полуокружности, соединяющей две вершины треугольника справа и слева от центра. Полуокружность пересекает боковые стороны.
Площадь выделенной фигуры равна сумме площадей двух треугольников (центр окружности, левая вершина и точка пересечения окружности с левой боковой стороной и центр окружности, правая вершина и точка пересечения окружности с правой боковой стороной) и сегмента круга (центр окружности и точки пересечения окружности с боковыми сторонами).
Площадь сегмента равна 1/6 площади круга радиуса a, площадь каждого треугольника равна a^2*√3/4.
1) 3/2cos2x + 1,5sin² x - 1 = 1,5cos2x + 1,5sin² x - 1 = 1,5(cos2x + sin² x) - 1 = 1,5(1 - 2sin²x + sin² x) - 1 = 1,5(1 - sin²x) - 1 = 1,5cos²x - 1.
2) 3sin²x + 1 - 3cos² x = 3sin²x - 3cos² x + 1 = -3(cos² x - sin²x) + 1 = -3cos2x+ 1
3) -7/2 cos 2x - cos x + 3,5cos² x = -3,5 cos 2x + 3,5cos² x - cos x = -3,5 (cos 2x - cos² x) - cos x = -3,5 (2cos²x - 1 - cos² x) - cos x = -3,5 (cos²x - 1) - cos x = 3,5 (1 - cos²x) - cos x = 3,5 sin²x - cos x
4) 5 - 20sin² a · cos²a ,если sin 2a=-1/5
5 - 20sin² a · cos²a = 5(1 - 4sin² a · cos²a) = 5(1 - sin2a) = 5(1 - (-1/5)) = 5 + 1 = 6.
11) найдите sin²a, если cos2a = 1/5
sin²a = (1 - cos2a)/2 = (1 - 1/5)/2 = (1 - 0,2)/2 = 0,8 / 2 = 0,4.
12) sin2x · tgx - sin²x + 1 = 2sinx · cosx · (sinx/cosx) - sin²x + 1 = 2sinx · sinx - sin²x + 1 = 2sin²x - sin²x + 1 = sin²x + 1
S1=(4a-π)a^2
S2=(8+π)a^2/2
S3=a^2(π+3√3)/6
Объяснение:
На первом рисунке деталь, образованная высверливанием с каждого угла квадрата по четверти круга. То есть из площади квадрата удалено 4 раза по 1/4 площади круга радиуса а.
Площадь полученной фигуры равна разности площади квадрата со стороной 2а и 4/4 площади круга с радиусом а.
S=(2a)^2-πa^2=4a^2-πa^2=(4a-π)a^2
На втором рисунке прямоугольная деталь 2a x 4a, скругленный с короткой стороны с радиусом скругления a. В детали просверлены два отверстия диаметром a.
Площадь фигуры без учета высверленных отверстий равна сумме площади квадрата 2a x 2a и площадей двух полукругов с радиусом a.
площадь каждого из отверстий равна π(a/2)^2.
S=(2a)^2+πa^2-2π(a/2)^2=4a^2+πa^2-2πa^2/4=4a^2+(4πa^2-2πa^2)/4=4a^2+2πa^2/4=4a^2+πa^2/2=(8a^2+πa^2)/2=(8+π)a^2/2
На третьем рисунке изображен правильный треугольник, середина основания которого, является центром полуокружности, соединяющей две вершины треугольника справа и слева от центра. Полуокружность пересекает боковые стороны.
Площадь выделенной фигуры равна сумме площадей двух треугольников (центр окружности, левая вершина и точка пересечения окружности с левой боковой стороной и центр окружности, правая вершина и точка пересечения окружности с правой боковой стороной) и сегмента круга (центр окружности и точки пересечения окружности с боковыми сторонами).
Площадь сегмента равна 1/6 площади круга радиуса a, площадь каждого треугольника равна a^2*√3/4.
S=πa^2/6+2*a^2*√3/4=πa^2/6+a^2*√3/2=πa^2/6+3a^2*√3/6=a^2(π+3√3)/6